[1]
A. Green , A. S. Wild, G. Roglic, , R. Sicree, and H. King, Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care, 2004, 27, p.1047–1053.
DOI: 10.2337/diacare.27.10.2569-a
Google Scholar
[2]
H. R. Taylor and J. E. Keeffe, World blindness: A 21st century perspective, Br. J. Ophthalmol., 2001, 85, p.261–266.
Google Scholar
[3]
D. Klonoff and D. Schwartz, An economic analysis of interventions for diabetes, Diabetes Care, 2000, 23, p.390–404.
DOI: 10.2337/diacare.23.3.390
Google Scholar
[4]
D. H. A. Quigley and A. T. Broman, The number of people with Glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol., 2006, 90, p.262–267.
Google Scholar
[5]
H. A. Aquino, M. Emilio, D. Marin, Detecting the Optic Disc boundary in digital fundus images using morphological, Edge detection and feature extraction techniques, IEEE Transaction on Medical Imaging, 2010, 29(11).
DOI: 10.1109/tmi.2010.2053042
Google Scholar
[6]
C. Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H. Williamson, Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images, Br. J. Ophthalmol., 1999, 83, p.902–910.
DOI: 10.1136/bjo.83.8.902
Google Scholar
[7]
A. A. H. A. R. Youssif, A. Z. Ghalwash, and A. R. Ghoneim, Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter, IEEE Trans. Med. Imag., 2008, 27, p.11–18.
DOI: 10.1109/tmi.2007.900326
Google Scholar
[8]
C. Sinthanayothin, Image analysis for automatic diagnosis of diabetic retinopathy, Ph.D. dissertation, Univ. London, London, U.K., (1999).
Google Scholar
[9]
M. Foracchia, E. Grisan, and A. Ruggeri, Detection of optic disc in retinal images by means of a geometrical model of vessel structure, IEEE Trans. Med. Imag., 2004, 23(10), p.1189–1195.
DOI: 10.1109/tmi.2004.829331
Google Scholar
[10]
A. Hoover and M. Goldbaum, Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels, IEEE Trans Med. Imag., 2003, 22(8), p.951–958.
DOI: 10.1109/tmi.2003.815900
Google Scholar
[11]
B. Thomas ,A. Osareh, M. Mirmehdi, and R. Markham, Comparison of colour spaces for optic disc localisation in retinal images, in Proc. 16th Int. Conf. Pattern Recognit., 2002, p.743–746.
DOI: 10.1109/icpr.2002.1044865
Google Scholar
[12]
D. W. K. Wong, J. Liu, J. H. Lim, X. Jia, F. Yin, H. Li, and T. Y. Wong, Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI, in Proc. 30th Annu. Int. IEEE EMBS Conf., 2008, p.2266–2269.
DOI: 10.1109/iembs.2008.4649648
Google Scholar
[13]
T. Walter and J. C. Klein, Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques, in Proc. 2nd Int. Symp. Med. Data Anal., 2001, p.282–287.
DOI: 10.1007/3-540-45497-7_43
Google Scholar
[14]
A. W. Reza, C. Eswaran, and S. Hati, Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds, J. Med. Syst., 2008, 33, p.73–80.
DOI: 10.1007/s10916-008-9166-4
Google Scholar
[15]
M. D. Abràmoff, W. L. M. Alward, E. C. Greenlee, L. Shuba, C. Y. Kim, J. H. Fingert, and Y. H. Kwon, Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features, Invest. Ophthalmol. Vis. Sci., 2007, 48(4), p.1665.
DOI: 10.1167/iovs.06-1081
Google Scholar
[16]
B. Zhang, L. Zhang, F. Karray, Retinal vessel extraction by matched filter with first order derivative of Gaussian, Computers in Biology and Medicine , 2010, 40, pp.438-445.
DOI: 10.1016/j.compbiomed.2010.02.008
Google Scholar
[17]
G. G. Gardner, D. Keating, T. H. Williamson, and A. T. Elliott, Automatic detection of diabetic retinopathy using an artificial neural network: A screening tool, Br. J. Ophthalmol., 2000, 80, p.940–944.
DOI: 10.1136/bjo.80.11.940
Google Scholar
[18]
E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators and support vector classification, IEEE Trans. Med. Imag., 2007, 26(10), p.1357–1365.
DOI: 10.1109/tmi.2007.898551
Google Scholar
[19]
Niemeijer, J. Staal, B. v. Ginneken, M. Loog, and M. D. Abramoff, J. Fitzpatrick and M. Sonka, Eds., Comparative study of retinal vessel segmentation methods on a new publicly available database, in SPIE Med. Imag., 2004, 5370, p.648–65.
DOI: 10.1117/12.535349
Google Scholar
[20]
J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. V. Ginneken, Ridge based vessel segmentation in color images of the retina, IEEE Trans. Med. Imag., 2004, 23(4), p.501–509.
DOI: 10.1109/tmi.2004.825627
Google Scholar
[21]
J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, Jr., H. F. Jelinek, and M.J. Cree, Retinal vessel segmentation using the 2D Gabor wavelet and supervised classification, IEEE Trans. Med. Imag., 2006, 25(9), p.1214–1222.
DOI: 10.1109/tmi.2006.879967
Google Scholar
[22]
B. S. Y. Lam and Yan, A novel vessel segmentation algorithm for pathological retina images based on the divergence of vector fields, IEEE Trans. Med. Imag., 2008, 27(2), pp.237-246.
DOI: 10.1109/tmi.2007.909827
Google Scholar
[23]
H. F. Jelinek, M. J. Cree, J. J. G. Leandro, J. V. B. Soares, R. M. C. Jr, and A. Luckie, Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy, J. Opt. Soc. Am. A, 2007, 24, p.1448–1456.
DOI: 10.1364/josaa.24.001448
Google Scholar
[24]
.E. Ardizzone, R. Pirrone, O. Gambino, and S. Radosta, Blood vessels and feature points detection on retinal images, in Proc. 30th Annu. Int. IEEE EMBS Conf., Aug. 2008, p.2246–2249.
DOI: 10.1109/iembs.2008.4649643
Google Scholar
[25]
D. Marin, A. Aquino, M. Emilio and J. M. Bravo, A new supervised method for blood vessel segmentation in retinal images by using gray level and moment invariant based features, IEEE Transaction on medical Imaging, 2011, 30(1).
DOI: 10.1109/tmi.2010.2064333
Google Scholar
[26]
D.K. Goatman, A. Fleming, S. Philip and P. Sharp, Detection of new vessels on the optic disc using retinal photographs, IEEE Transaction on Medical Imaging, 2011, 30(4).
DOI: 10.1109/tmi.2010.2099236
Google Scholar
[27]
Saleh Shahbeig, Automatic and quick blood vessels extraction algorithm in retinal images, IET image processing, 2013, 7(4), pp.392-400.
DOI: 10.1049/iet-ipr.2012.0472
Google Scholar
[28]
Esmaeili. M, Rabhani. H, Dehnavi.A. M, Dehghai. A, Automatic detection of exudates and optic disk in retinal images using Curvelet transform, IET image processing, 2012, 6(7), pp.1005-1013.
DOI: 10.1049/iet-ipr.2011.0333
Google Scholar
[29]
L. Gagnon, M. Lalonde, M. Beaulieu, and M. -C. Boucher. Procedure to detect anatomical structures in optical fundus images. In Proc. SPIE Medical Imaging: Image Processing, pages 2001, p.1218–1225.
DOI: 10.1117/12.430999
Google Scholar
[30]
H. Li and O. Chutatape. A model-based approach for automated feature extraction in fundus images., In Proc. IEEE International Conf. on Computer Vision, 2003 , p.394.
DOI: 10.1109/iccv.2003.1238371
Google Scholar