A Novel Efficient Approach for the Screening of New Abnormal Blood Vessels in Color Fundus Images

Article Preview

Abstract:

Reliable detection of abnormal vessels in color fundus image is still a great issue in medical image processing. An Efficient and robust approach for automatic detection of abnormal blood vessels in digital color fundus images is presented in this paper. First, the fundus images are preprocessed by applying a 3x3 median filter. Then, the images are segmented using a novel morphological operation. To classify these segmented image into normal and abnormal, seven features based on shape, contrast, position and density are extracted. Finally, these features are classified using a non-linear Support Vector Machine (SVM) Classifier. The average computation time for blood vessel detection was less than 2.4sec with a success rate of 99%. The performance of our proposed method is measured on publically available DRIVE and STARE database.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

808-813

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Green , A. S. Wild, G. Roglic, , R. Sicree, and H. King, Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care, 2004, 27, p.1047–1053.

DOI: 10.2337/diacare.27.10.2569-a

Google Scholar

[2] H. R. Taylor and J. E. Keeffe, World blindness: A 21st century perspective, Br. J. Ophthalmol., 2001, 85, p.261–266.

Google Scholar

[3] D. Klonoff and D. Schwartz, An economic analysis of interventions for diabetes, Diabetes Care, 2000, 23, p.390–404.

DOI: 10.2337/diacare.23.3.390

Google Scholar

[4] D. H. A. Quigley and A. T. Broman, The number of people with Glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol., 2006, 90, p.262–267.

Google Scholar

[5] H. A. Aquino, M. Emilio, D. Marin, Detecting the Optic Disc boundary in digital fundus images using morphological, Edge detection and feature extraction techniques, IEEE Transaction on Medical Imaging, 2010, 29(11).

DOI: 10.1109/tmi.2010.2053042

Google Scholar

[6] C. Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H. Williamson, Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images, Br. J. Ophthalmol., 1999, 83, p.902–910.

DOI: 10.1136/bjo.83.8.902

Google Scholar

[7] A. A. H. A. R. Youssif, A. Z. Ghalwash, and A. R. Ghoneim, Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter, IEEE Trans. Med. Imag., 2008, 27, p.11–18.

DOI: 10.1109/tmi.2007.900326

Google Scholar

[8] C. Sinthanayothin, Image analysis for automatic diagnosis of diabetic retinopathy, Ph.D. dissertation, Univ. London, London, U.K., (1999).

Google Scholar

[9] M. Foracchia, E. Grisan, and A. Ruggeri, Detection of optic disc in retinal images by means of a geometrical model of vessel structure, IEEE Trans. Med. Imag., 2004, 23(10), p.1189–1195.

DOI: 10.1109/tmi.2004.829331

Google Scholar

[10] A. Hoover and M. Goldbaum, Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels, IEEE Trans Med. Imag., 2003, 22(8), p.951–958.

DOI: 10.1109/tmi.2003.815900

Google Scholar

[11] B. Thomas ,A. Osareh, M. Mirmehdi, and R. Markham, Comparison of colour spaces for optic disc localisation in retinal images, in Proc. 16th Int. Conf. Pattern Recognit., 2002, p.743–746.

DOI: 10.1109/icpr.2002.1044865

Google Scholar

[12] D. W. K. Wong, J. Liu, J. H. Lim, X. Jia, F. Yin, H. Li, and T. Y. Wong, Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI, in Proc. 30th Annu. Int. IEEE EMBS Conf., 2008, p.2266–2269.

DOI: 10.1109/iembs.2008.4649648

Google Scholar

[13] T. Walter and J. C. Klein, Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques, in Proc. 2nd Int. Symp. Med. Data Anal., 2001, p.282–287.

DOI: 10.1007/3-540-45497-7_43

Google Scholar

[14] A. W. Reza, C. Eswaran, and S. Hati, Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds, J. Med. Syst., 2008, 33, p.73–80.

DOI: 10.1007/s10916-008-9166-4

Google Scholar

[15] M. D. Abràmoff, W. L. M. Alward, E. C. Greenlee, L. Shuba, C. Y. Kim, J. H. Fingert, and Y. H. Kwon, Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features, Invest. Ophthalmol. Vis. Sci., 2007, 48(4), p.1665.

DOI: 10.1167/iovs.06-1081

Google Scholar

[16] B. Zhang, L. Zhang, F. Karray, Retinal vessel extraction by matched filter with first order derivative of Gaussian, Computers in Biology and Medicine , 2010, 40, pp.438-445.

DOI: 10.1016/j.compbiomed.2010.02.008

Google Scholar

[17] G. G. Gardner, D. Keating, T. H. Williamson, and A. T. Elliott, Automatic detection of diabetic retinopathy using an artificial neural network: A screening tool, Br. J. Ophthalmol., 2000, 80, p.940–944.

DOI: 10.1136/bjo.80.11.940

Google Scholar

[18] E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators and support vector classification, IEEE Trans. Med. Imag., 2007, 26(10), p.1357–1365.

DOI: 10.1109/tmi.2007.898551

Google Scholar

[19] Niemeijer, J. Staal, B. v. Ginneken, M. Loog, and M. D. Abramoff, J. Fitzpatrick and M. Sonka, Eds., Comparative study of retinal vessel segmentation methods on a new publicly available database, in SPIE Med. Imag., 2004, 5370, p.648–65.

DOI: 10.1117/12.535349

Google Scholar

[20] J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. V. Ginneken, Ridge based vessel segmentation in color images of the retina, IEEE Trans. Med. Imag., 2004, 23(4), p.501–509.

DOI: 10.1109/tmi.2004.825627

Google Scholar

[21] J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, Jr., H. F. Jelinek, and M.J. Cree, Retinal vessel segmentation using the 2D Gabor wavelet and supervised classification, IEEE Trans. Med. Imag., 2006, 25(9), p.1214–1222.

DOI: 10.1109/tmi.2006.879967

Google Scholar

[22] B. S. Y. Lam and Yan, A novel vessel segmentation algorithm for pathological retina images based on the divergence of vector fields, IEEE Trans. Med. Imag., 2008, 27(2), pp.237-246.

DOI: 10.1109/tmi.2007.909827

Google Scholar

[23] H. F. Jelinek, M. J. Cree, J. J. G. Leandro, J. V. B. Soares, R. M. C. Jr, and A. Luckie, Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy, J. Opt. Soc. Am. A, 2007, 24, p.1448–1456.

DOI: 10.1364/josaa.24.001448

Google Scholar

[24] .E. Ardizzone, R. Pirrone, O. Gambino, and S. Radosta, Blood vessels and feature points detection on retinal images, in Proc. 30th Annu. Int. IEEE EMBS Conf., Aug. 2008, p.2246–2249.

DOI: 10.1109/iembs.2008.4649643

Google Scholar

[25] D. Marin, A. Aquino, M. Emilio and J. M. Bravo, A new supervised method for blood vessel segmentation in retinal images by using gray level and moment invariant based features, IEEE Transaction on medical Imaging, 2011, 30(1).

DOI: 10.1109/tmi.2010.2064333

Google Scholar

[26] D.K. Goatman, A. Fleming, S. Philip and P. Sharp, Detection of new vessels on the optic disc using retinal photographs, IEEE Transaction on Medical Imaging, 2011, 30(4).

DOI: 10.1109/tmi.2010.2099236

Google Scholar

[27] Saleh Shahbeig, Automatic and quick blood vessels extraction algorithm in retinal images, IET image processing, 2013, 7(4), pp.392-400.

DOI: 10.1049/iet-ipr.2012.0472

Google Scholar

[28] Esmaeili. M, Rabhani. H, Dehnavi.A. M, Dehghai. A, Automatic detection of exudates and optic disk in retinal images using Curvelet transform, IET image processing, 2012, 6(7), pp.1005-1013.

DOI: 10.1049/iet-ipr.2011.0333

Google Scholar

[29] L. Gagnon, M. Lalonde, M. Beaulieu, and M. -C. Boucher. Procedure to detect anatomical structures in optical fundus images. In Proc. SPIE Medical Imaging: Image Processing, pages 2001, p.1218–1225.

DOI: 10.1117/12.430999

Google Scholar

[30] H. Li and O. Chutatape. A model-based approach for automated feature extraction in fundus images., In Proc. IEEE International Conf. on Computer Vision, 2003 , p.394.

DOI: 10.1109/iccv.2003.1238371

Google Scholar