[1]
A.S. Neubauer, C. Chryssafis, M. Thiel, S. Priglinger, U. Welge-Lussen, A. Kampik, Screening for diabetic retinopathy and optic disc topography with the 'retinal thickness analyzer', (RTA), Ophthalmology 102 (2005) 251–258.
DOI: 10.1007/s00347-004-1098-x
Google Scholar
[2]
M.J. Cree, J.J.G. Leandro, J.V.B. Soares, R.M.J.C. Jr, H.F. Jelinek, D. Cornforth, Comparison of various methods to delineate blood vessels in retinal images, in: 16th Australian Institute of Physics Congress, Canberra, (2005).
Google Scholar
[3]
M. Niemeijer, B. van Ginneken, J. Staal, M.S.A. Suttorp-Schulten, M.D. Abramoff, Automatic detection of red lesions in digital color fundus photographs, IEEE Trans. Med. Imag. 24 (2005) 584–592.
DOI: 10.1109/tmi.2005.843738
Google Scholar
[4]
C. Sinthanayothin, V. Kongbunkiat, S. Phoojaruenchanachai, A. Singalavanija, Automated screening system for diabetic retinopathy, in: ISPA 2003, Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003. vol. 912, 2003, p.915.
DOI: 10.1109/ispa.2003.1296409
Google Scholar
[5]
P. Kahai, K.R. Namuduri, H. Thompson, A decision support framework for automated screening of diabetic retinopathy, Int. J. Biomed. Imag. (2006).
DOI: 10.1155/ijbi/2006/45806
Google Scholar
[6]
D. Usher, M. Dumskyj, M. Himaga, T.H. Williamson, S. Nussey, J. Boyce, Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening, Diabetic Med. 21 (2004) 84–90.
DOI: 10.1046/j.1464-5491.2003.01085.x
Google Scholar
[7]
M. Larsen, J. Godt, N. Larsen, H. Lund-Andersen, A.K. Sjølie, E. Agardh, H. Kalm, M. Grunkin, D.R. Owens, Automated detection of fundus photographic red lesions in diabetic retinopathy, Invest. Ophthalmology. Vis. Sci. 44 (2003) 761– 766.
DOI: 10.1167/iovs.02-0418
Google Scholar
[8]
A. Osareh, M. Mirmehdi, B.T. Thomas, R. Markham, Comparative exudates classification using support vector machines and neural networks, in: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention – Part II, Springer-Verlag, 2002, p.413.
DOI: 10.1007/3-540-45787-9_52
Google Scholar
[9]
S.C. Lee, E.T. Lee, Y. Wang, R. Klein, R.M. Kingsley, A. Warn, Computer classification of non-proliferative diabetic retinopathy, Arch. Ophthalmol. 123 (2005) 759–764.
Google Scholar
[10]
J. Nayak, P. Bhat, R. Acharya U, C. Lim, M. Kagathi, Automated identification ofdiabetic retinopathy stages using digital fundus images, J. Med. Syst. 32 (2008) 107–115.
DOI: 10.1007/s10916-007-9113-9
Google Scholar
[11]
W.L. Yun, U. Rajendra Acharya, Y.V. Venkatesh, C. Chee, L.C. Min, E.Y.K. Ng, Identification of different stages of diabetic retinopathy using retinal optical images, Informat. Sci. 178 (2008) 106–121.
DOI: 10.1016/j.ins.2007.07.020
Google Scholar
[12]
U.R. Acharya, C.K. Chua, E.Y. Ng, W. Yu, C. Chee, Application of higher order spectra for the identification of diabetes retinopathy stages, J. Med. Syst. 32 (2008)481–488.
DOI: 10.1007/s10916-008-9154-8
Google Scholar