Automatic Detection of Diabetic Retinopathy by Using Evolutionary Computation Algorithm Based on Feature Extraction

Article Preview

Abstract:

According to current status Diabetes is the third leading cause of death after cancer and heart diseases. The serious complications of uncontrolled diabetes include kidney damage, eye damage, nerve disease and stroke. Diabetic retinopathy (DR) is a common retinal problem associated with diabetes. This paper focuses on Diabetic Retinopathy and finds the exudates parts in the eye by implementing combinations of global optimization techniques such as Particle Swarm Optimization (PSO) based on feature extraction. It can also be helpful in improving the performance by accuracy, sensitivity and specificity for detecting the Diabetic Retinopathy when compare to other traditional methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

819-824

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.S. Neubauer, C. Chryssafis, M. Thiel, S. Priglinger, U. Welge-Lussen, A. Kampik, Screening for diabetic retinopathy and optic disc topography with the 'retinal thickness analyzer', (RTA), Ophthalmology 102 (2005) 251–258.

DOI: 10.1007/s00347-004-1098-x

Google Scholar

[2] M.J. Cree, J.J.G. Leandro, J.V.B. Soares, R.M.J.C. Jr, H.F. Jelinek, D. Cornforth, Comparison of various methods to delineate blood vessels in retinal images, in: 16th Australian Institute of Physics Congress, Canberra, (2005).

Google Scholar

[3] M. Niemeijer, B. van Ginneken, J. Staal, M.S.A. Suttorp-Schulten, M.D. Abramoff, Automatic detection of red lesions in digital color fundus photographs, IEEE Trans. Med. Imag. 24 (2005) 584–592.

DOI: 10.1109/tmi.2005.843738

Google Scholar

[4] C. Sinthanayothin, V. Kongbunkiat, S. Phoojaruenchanachai, A. Singalavanija, Automated screening system for diabetic retinopathy, in: ISPA 2003, Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003. vol. 912, 2003, p.915.

DOI: 10.1109/ispa.2003.1296409

Google Scholar

[5] P. Kahai, K.R. Namuduri, H. Thompson, A decision support framework for automated screening of diabetic retinopathy, Int. J. Biomed. Imag. (2006).

DOI: 10.1155/ijbi/2006/45806

Google Scholar

[6] D. Usher, M. Dumskyj, M. Himaga, T.H. Williamson, S. Nussey, J. Boyce, Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening, Diabetic Med. 21 (2004) 84–90.

DOI: 10.1046/j.1464-5491.2003.01085.x

Google Scholar

[7] M. Larsen, J. Godt, N. Larsen, H. Lund-Andersen, A.K. Sjølie, E. Agardh, H. Kalm, M. Grunkin, D.R. Owens, Automated detection of fundus photographic red lesions in diabetic retinopathy, Invest. Ophthalmology. Vis. Sci. 44 (2003) 761– 766.

DOI: 10.1167/iovs.02-0418

Google Scholar

[8] A. Osareh, M. Mirmehdi, B.T. Thomas, R. Markham, Comparative exudates classification using support vector machines and neural networks, in: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention – Part II, Springer-Verlag, 2002, p.413.

DOI: 10.1007/3-540-45787-9_52

Google Scholar

[9] S.C. Lee, E.T. Lee, Y. Wang, R. Klein, R.M. Kingsley, A. Warn, Computer classification of non-proliferative diabetic retinopathy, Arch. Ophthalmol. 123 (2005) 759–764.

Google Scholar

[10] J. Nayak, P. Bhat, R. Acharya U, C. Lim, M. Kagathi, Automated identification ofdiabetic retinopathy stages using digital fundus images, J. Med. Syst. 32 (2008) 107–115.

DOI: 10.1007/s10916-007-9113-9

Google Scholar

[11] W.L. Yun, U. Rajendra Acharya, Y.V. Venkatesh, C. Chee, L.C. Min, E.Y.K. Ng, Identification of different stages of diabetic retinopathy using retinal optical images, Informat. Sci. 178 (2008) 106–121.

DOI: 10.1016/j.ins.2007.07.020

Google Scholar

[12] U.R. Acharya, C.K. Chua, E.Y. Ng, W. Yu, C. Chee, Application of higher order spectra for the identification of diabetes retinopathy stages, J. Med. Syst. 32 (2008)481–488.

DOI: 10.1007/s10916-008-9154-8

Google Scholar