Test Analysis of MSD Crack Propagation Structure in 2524-T3 Aluminium Alloy

Article Preview

Abstract:

The MSD phenomenon is an active research topic of the academic and the aviation industry. This paper puts emphasis on the multi-crack propagation with interactive effects of MSD structure in 2524-T3 aluminium alloy. Material tests were accomplished for the crack growth parameters. The multi-crack propagation tests were conducted on specimens containing 5-similar-details, and the corresponding fatigue crack growth analysis with a fast prediction of crack growth life method were accomplished with finite element software. The comparison of crack tip position vs. load cycling from the test and the numerical simulation shows that the numerical simulation can give a good agreement to the experiment result.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

386-390

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] NTSB. Aloha airlines, flight 234 boeing 737-200, N73711, near Maui, Hawaii, April 28, 1988. Aloha airlines: Aircraft accident report NTSB/AAR-89/03. (1989).

Google Scholar

[2] FAA. Establishing and implementing limit of validity to prevent widespread fatigue damage. FAR 25, AC No. 120-104. (2011).

Google Scholar

[3] FAA. Transport category airplanes. FAR 25, Amendment No. 25. 132. (2010).

Google Scholar

[4] FAA. Damage tolerance and fatigue evaluation of structure. FAR 25, AC No. 25. 571-1C. (1998).

Google Scholar

[5] FAA. Damage tolerance and fatigue evaluation of structure. FAR, AC No. 25. 571-1D. (2011).

Google Scholar

[6] J. Schijve, Fatigue damage in aircraft structures, not wanted, but tolerated, Int. J. Fatigue. 31 (2009) 998–1011.

DOI: 10.1016/j.ijfatigue.2008.05.016

Google Scholar

[7] R. Eastin, WFD'-what is it and what's 'LOV, got to do with it, Int. J. Fatigue. 31 (2009) 1012–1016.

DOI: 10.1016/j.ijfatigue.2008.04.003

Google Scholar

[8] J. Xie, Y. Lu and P. He, Analysis of airworthiness requirements on amdt. 25-132 of limit of validity to preclude widespread fatigue damage, Proc. Eng. 17 (2011) 258-269.

DOI: 10.1016/j.proeng.2011.10.027

Google Scholar

[9] M.C. Cherry, S. Mall and B. Heinimann et el, Residual strength of unstiffened aluminum aluminum panels with multiple site damage, Eng. Fract. Mech. 57 (1997) 701–713.

DOI: 10.1016/s0013-7944(97)00037-4

Google Scholar

[10] E.J. Moukawsher, M.B. Heinimannt and A.F. Grandt Jr., Residual strength of panels with multiple site damage, J. Aircraft. 33 (1996) 1014–1021.

DOI: 10.2514/3.47048

Google Scholar

[11] JY. Zhang, R. Bao and BJ. Fei, Modified Swift Criteria for Residual Strength of Multiple Site Damage Structure, Key Eng. Mater. 417-417 (2010) 881-884.

DOI: 10.4028/www.scientific.net/kem.417-418.881

Google Scholar

[12] JP. Zhang, JY. Zhang and R. Bao, et al, Study of methods for evaluating the probability of multiple site damage occurrences, Sci. China-Phys. Mech. Astron. 57 (2014) 65-73.

DOI: 10.1007/s11433-013-5334-8

Google Scholar

[13] S. S. Naarayan, D. V. T. G. P. Kumar and S. Chandra, Implication of unequal rivet load distribution in the failures and damage tolerant design of metal and composite civil aircraft riveted lap joints, Eng. Fail. Anal. 16 (2009) 2255–2273.

DOI: 10.1016/j.engfailanal.2009.03.016

Google Scholar

[14] JY. Zhang, XH. Shi, R. Bao and BJ. Fei, Tension-torsion high-cycle fatigue failure analysis of 2A12-T4 aluminum alloy with different stress ratios, Int. J. Fatigue. 33(2011) 1066-1074.

DOI: 10.1016/j.ijfatigue.2010.12.007

Google Scholar

[15] JY. Zhang, XH. Shi and BJ. Fei, High cycle fatigue and fracture mode analysis of 2A12-T4 aluminum alloy under out-of-phase axial-torsion constant amplitude loading, Int. J. Fatigue. 38(2012) 144-154.

DOI: 10.1016/j.ijfatigue.2011.12.017

Google Scholar

[16] JY. Zhang, QS. Xiao, XH. Shi and BJ. Fei, Effect of mean shear stress on torsion fatigue failure behavior of 2A12-T4 aluminum alloy. Int J Fatigue, Int. J. Fatigue (2013), in press, http: /dx. doi. org/10. 1016/j. ijfatigue. 2013. 11. 012.

DOI: 10.1016/j.ijfatigue.2013.11.012

Google Scholar

[17] JY. Zhang, R. Bao, LB. zhao, LP. Long and BJ. Fei, Crack growth life estimating for MSD panel. Advanced Materials Research, Adv. Mater. Res. 33-37 (2008) 175-180.

DOI: 10.4028/www.scientific.net/amr.33-37.175

Google Scholar