[1]
NTSB. Aloha airlines, flight 234 boeing 737-200, N73711, near Maui, Hawaii, April 28, 1988. Aloha airlines: Aircraft accident report NTSB/AAR-89/03. (1989).
Google Scholar
[2]
FAA. Establishing and implementing limit of validity to prevent widespread fatigue damage. FAR 25, AC No. 120-104. (2011).
Google Scholar
[3]
FAA. Transport category airplanes. FAR 25, Amendment No. 25. 132. (2010).
Google Scholar
[4]
FAA. Damage tolerance and fatigue evaluation of structure. FAR 25, AC No. 25. 571-1C. (1998).
Google Scholar
[5]
FAA. Damage tolerance and fatigue evaluation of structure. FAR, AC No. 25. 571-1D. (2011).
Google Scholar
[6]
J. Schijve, Fatigue damage in aircraft structures, not wanted, but tolerated, Int. J. Fatigue. 31 (2009) 998–1011.
DOI: 10.1016/j.ijfatigue.2008.05.016
Google Scholar
[7]
R. Eastin, WFD'-what is it and what's 'LOV, got to do with it, Int. J. Fatigue. 31 (2009) 1012–1016.
DOI: 10.1016/j.ijfatigue.2008.04.003
Google Scholar
[8]
J. Xie, Y. Lu and P. He, Analysis of airworthiness requirements on amdt. 25-132 of limit of validity to preclude widespread fatigue damage, Proc. Eng. 17 (2011) 258-269.
DOI: 10.1016/j.proeng.2011.10.027
Google Scholar
[9]
M.C. Cherry, S. Mall and B. Heinimann et el, Residual strength of unstiffened aluminum aluminum panels with multiple site damage, Eng. Fract. Mech. 57 (1997) 701–713.
DOI: 10.1016/s0013-7944(97)00037-4
Google Scholar
[10]
E.J. Moukawsher, M.B. Heinimannt and A.F. Grandt Jr., Residual strength of panels with multiple site damage, J. Aircraft. 33 (1996) 1014–1021.
DOI: 10.2514/3.47048
Google Scholar
[11]
JY. Zhang, R. Bao and BJ. Fei, Modified Swift Criteria for Residual Strength of Multiple Site Damage Structure, Key Eng. Mater. 417-417 (2010) 881-884.
DOI: 10.4028/www.scientific.net/kem.417-418.881
Google Scholar
[12]
JP. Zhang, JY. Zhang and R. Bao, et al, Study of methods for evaluating the probability of multiple site damage occurrences, Sci. China-Phys. Mech. Astron. 57 (2014) 65-73.
DOI: 10.1007/s11433-013-5334-8
Google Scholar
[13]
S. S. Naarayan, D. V. T. G. P. Kumar and S. Chandra, Implication of unequal rivet load distribution in the failures and damage tolerant design of metal and composite civil aircraft riveted lap joints, Eng. Fail. Anal. 16 (2009) 2255–2273.
DOI: 10.1016/j.engfailanal.2009.03.016
Google Scholar
[14]
JY. Zhang, XH. Shi, R. Bao and BJ. Fei, Tension-torsion high-cycle fatigue failure analysis of 2A12-T4 aluminum alloy with different stress ratios, Int. J. Fatigue. 33(2011) 1066-1074.
DOI: 10.1016/j.ijfatigue.2010.12.007
Google Scholar
[15]
JY. Zhang, XH. Shi and BJ. Fei, High cycle fatigue and fracture mode analysis of 2A12-T4 aluminum alloy under out-of-phase axial-torsion constant amplitude loading, Int. J. Fatigue. 38(2012) 144-154.
DOI: 10.1016/j.ijfatigue.2011.12.017
Google Scholar
[16]
JY. Zhang, QS. Xiao, XH. Shi and BJ. Fei, Effect of mean shear stress on torsion fatigue failure behavior of 2A12-T4 aluminum alloy. Int J Fatigue, Int. J. Fatigue (2013), in press, http: /dx. doi. org/10. 1016/j. ijfatigue. 2013. 11. 012.
DOI: 10.1016/j.ijfatigue.2013.11.012
Google Scholar
[17]
JY. Zhang, R. Bao, LB. zhao, LP. Long and BJ. Fei, Crack growth life estimating for MSD panel. Advanced Materials Research, Adv. Mater. Res. 33-37 (2008) 175-180.
DOI: 10.4028/www.scientific.net/amr.33-37.175
Google Scholar