[1]
M.S. Hebbal, V.B. Math, B.G. Sheeparamatti., A Study on Reducing the Root Fillet Stress in Spur Gear Using Internal Stress Relieving Feature of Different Shapes, International Journal of Recent Trends in Engineering 1(2009)163-165.
Google Scholar
[2]
P. Wagaj, A. Kahraman., Influence of Tooth Profile Modification on Helical Gear Durability, Journal of Mechanical Design 124 (2002) 501-510.
DOI: 10.1115/1.1485289
Google Scholar
[3]
L. Wilcox, W. Coleman, Application of Finite Element to the Analysis of Gear Tooth Stresses, Journal of Engineering for Industry 95 (1973) 1139 -1148.
DOI: 10.1115/1.3438262
Google Scholar
[4]
T T. Sayama, S. Oda, K. Umeezawa, Root Stresses and Bending Fatigue Strength of Welded Structure Gears, International Symposium on Gearing & Power Transmissions, Japan, Tokyo, (1981).
Google Scholar
[5]
A.H. Elkholy, Tooth Load Sharing in High Contact Ratio Spur Gears, Journal of Mechanisms, Transmissions, and Automation in Design 107 (1985) 11-16.
DOI: 10.1115/1.3258674
Google Scholar
[6]
S.C. Mohanty, Tooth Load Sharing and Contact Stress Analysis of High Contact Ratio Spur Gears in Mesh, National Convention of Mechanical Engineers, Roukela, (2002).
Google Scholar
[7]
L. Fredette, M. Brown, Gear Stress Reduction Using Internal Stress Relief Features, Journal of Mechanical Design 119 (1997) 518-521.
DOI: 10.1115/1.2826398
Google Scholar
[8]
J. Lu, F.L. Litwin, J.S. Chen, Load share and Finite Element Stress Analysis for Double Circular-Arc Helical Gears, Mathematical and Computer Modeling 21 (1995) 13-30.
DOI: 10.1016/0895-7177(95)00067-c
Google Scholar
[9]
R. Handschuh, F.L. Litwin, A Method of Determining Spiral Bevel Gear tooth Geometry for Finite Element Analysis, NASA TPP-3096m AVSCOM TR -C-020, (1991).
Google Scholar
[10]
I. Moriwaki, T. Fukuda, Y. Watabe, K. Saito, K., Global Local Finite Element Method (GLFEM) in Gear Tooth Stress Analysis, Journal of Mechanical Design 115 (1993) 1008-1012.
DOI: 10.1115/1.2919248
Google Scholar
[11]
H.C. Chao, M. Baxter, H.S. Cheng, A Computer Solution for the Dynamic Load, Lubricant Film Thickness, and Surface Temperatures in Spiral Bevel Gears, in: G.K. Fischer (ed), Advanced Power Transmission Technology, NASA CP-2210, AVRADCOM TR-82-C-16, 1981, pp.345-364, (1981).
Google Scholar
[12]
R.J. Drago, B.R. Uppaluri, Large Rotorcraft Transmission Technology Development Program, Technical Report (D210-11972- 1-VOL-1), Boeing Vertol Co., NASA Contract NAS3-22143) NASA CR- 168116, (1983).
Google Scholar
[13]
L. Chien-Hsing, C. Hong-Shun, H. Chinghua, C. Yun-Yuan, Y. Cheng-Chung, Integration of Finite Element Analysis and Optimum Design on Gear Systems, Finite Elements in Analysis and Design 38 (2002) 179-192.
DOI: 10.1016/s0168-874x(01)00057-9
Google Scholar
[14]
V. Spitas, T. Costopoulos, C. Spitas, Increasing the Strength of Standard Involute Gear Teeth with Novel Circular Root Fillet Design, American Journal of Applied Sciences 2 (2005) 1058-1064.
DOI: 10.3844/ajassp.2005.1058.1064
Google Scholar
[15]
A.L. Kapelevich, R.E. Kleiss, Direct Gear Design for Spur and Helical Involute Gears, Gear Technology September/October (2002) 29-35.
DOI: 10.1201/9781003171485-2-2
Google Scholar
[16]
M. Guingand, J.P. de Vaujany, Y. Icard, Analysis and Optimization of the Loaded Meshing of Face Gears, Journal of Mechanical Design 127 (2005) 135-143.
DOI: 10.1115/1.1828459
Google Scholar
[17]
M. Beghini, F. Presicce, C. Santus, A Method to Define Profile Modification of Spur Gear and Minimize the Transmission Error, American Gear Manufacturer's Association, Technical Paper, pp.1-9, (2004).
Google Scholar