Effect of Annealing Temperature on Microstructures and Properties of Warmly Deformed SCRAM Steel

Article Preview

Abstract:

Effect of annealing temperature on microstructures and properties of warmly deformed SCRAM (Super-clean Reduced Activation Martensitic) steel on Gleeble-3500 thermo-simulation machine was investigated. The results showed that an increase in the annealing temperature can result in increasing the martensitic lath width from 0.48 um to 0.65 um and decreasing the dislocation density from 6.4×1015 m-2 to 2.8×1015 m-2 in SCRAM steel. The specimen exhibited high reduction of area and total elongations when the annealing temperature is up to 600 oC. The tensile fracture surface observation indicated that dimples became more uniform and deeper and cleavage fracture traces disappeared with the annealing temperature increasing. The irradiation-induced helium bubbles and hardening were observed in all the specimens after helium implantation to 1e + 17/cm2 at 450 oC. The helium bubbles became larger but less when the annealing temperature increased. The optimal annealing temperature is 450 oC in this experiment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

315-321

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu JN, Huang QY, Wan FR. Research and development on the China low activation martensitic steel (CLAM). J Nucl Mater 2007; 367: 97-101.

DOI: 10.1016/j.jnucmat.2007.03.236

Google Scholar

[2] H. Tanigawa, K. Shiba, H. Sakasegawa, et al., Fus. Eng. Des. 86 (2011) 2549–2552.

Google Scholar

[3] A. Kimura, R. Kasada, A. Kohyama, et al., J. Nucl. Mater. 367–370 (2007) 60–67.

Google Scholar

[4] N. Baluc, D.S. Gelles, S. Jitsukawa, et al., J. Nucl. Mater. 367–370 (2007) 33–41.

Google Scholar

[5] Q. Huang, C. Li, et al., J. Nucl. Mater. 367–370 (2007) 142–146.

Google Scholar

[6] X. S. Xiong, F. Yang, X. R. Zou, et al., J. Nucl. Mater. 430 (2012) 114-118.

Google Scholar

[7] R.L. Klueh, D.S. Gelles, S. Jitsukawa et al., J. Nucl. Mater. 307-311 (2002) 455.

Google Scholar

[8] A. Kimura, R. Kasada, K. Morishita, et al., J. Nucl. Mater. 307-311 (2002) 521-526.

Google Scholar

[9] Z. Q. Cui, Y. C. Xun, Metallography and Heat Treatment, secnnd ed., Metallurgical Industry Press, Beijing, (2007).

Google Scholar

[10] W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564.

Google Scholar

[11] J. Pěsička, R. Kužul, A. Dronhofer, G. Eggeler, Acta Mater. 51 (2003) 4847-4862.

Google Scholar

[12] D. Rojas, J. Garcia, O. Prat et al., Mater. Sci. Eng. A528 (2011) 1372-1381.

Google Scholar

[13] K. Takasawa, R. Ikeda et al., Int J Hydrogen Energy 37 (2012) 2669-2675.

Google Scholar

[14] B. Hoffmann, O. Vӧhringer , E. Macherauch, Mater. Sci. Eng. A319–321 (2001) 299-303.

Google Scholar

[15] N. Saeidi, A. Ekrami, Mater. Sci. Eng. A527 (2010) 5575-5581.

Google Scholar

[16] J. Henry, M. -H. Mathon, P. Jung, J. Nucl. Mater. 318 (2003) 249-259.

Google Scholar

[17] S. Fréchard, M. Walls, M. Kociak, et al., J. Nucl. Mater. 393 (2009) 102-107.

Google Scholar