Modelling Peterson Mutual Exclusion Algorithm in DVE Language and Verifying LTL Properties

Article Preview

Abstract:

Peterson mutual exclusion algorithm is a concurrent programming algorithm for mutual exclusion that allows two processes to share a single-use resource without conflict, using only shared memory for communication. DiVinE is a LTL model checker, and DVE is the specification language. In this paper, we implement the DVE model of Peterson mutual exclusion algorithm, and verify LTL properties of Peterson mutual exclusion algorithms using DiVinE model checker. The experimental results show that the LTL formula structure is relevant to the costs of LTL verification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1012-1016

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, Cambridge, MA, (1999).

Google Scholar

[2] C. Baier and J. P. Katoen. Principles of model checking. The MIT Press, Cambridge, MA, (2008).

Google Scholar

[3] E. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model Checking and the State Explosion Problem. Tools for Practical Software Verification. Lecture Notes in Computer Science Volume 7682, pages 1-30, (2012).

DOI: 10.1007/978-3-642-35746-6_1

Google Scholar

[4] J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020 states and beyond. Information and Computation, 98: 142-170, (1992).

DOI: 10.1016/0890-5401(92)90017-a

Google Scholar

[5] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer Academic Publishers, (1993).

Google Scholar

[6] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software. In POPL, pages 110-121. ACM, (2005).

DOI: 10.1145/1047659.1040315

Google Scholar

[7] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An approach to the State-Explosion Problem. Phd thesis, Universite De Liege, 1994-95.

Google Scholar

[8] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. Efficient stateful dynamic partial order reduction. In SPIN, Lecture Notes in Computer Science, pages 288-305. Springer, (2008).

DOI: 10.1007/978-3-540-85114-1_20

Google Scholar

[9] A. F. Donaldson and A. Miller. Symmetry reduction for probabilistic model checking using generic representatives. In Proceedings ATVA'06, vol 4218 of Lecture Notes in Computer Science, pages 9-23, (2006).

DOI: 10.1007/11901914_4

Google Scholar

[10] A. Miller, A. Donaldson, and M. Calder. Symmetry in temporal logic model checking. Computing Surveys, (2006).

DOI: 10.1145/1132960.1132962

Google Scholar

[11] A. N. Nepeivoda. Verification of a technical system model with linear temporal logic. Automation and Remote Control Vol 73, pages 1539-1552, (2012).

DOI: 10.1134/s0005117912090081

Google Scholar

[12] M. Sulzmann and A. Zechner. Constructive Finite Trace Analysis with Linear Temporal Logic. Lecture Notes in Computer Science Volume 7305, pages 132-148, (2012).

DOI: 10.1007/978-3-642-30473-6_11

Google Scholar

[13] P. Schnoebelen. The complexity of temporal logic model checking. Advances in Modal Logic Volume 4, (2003).

Google Scholar

[14] F. Ranzato. A More Effient Simulation Algorithm on Kripke Structures. Lecture Noes in Computer Science Volume 8087, pages 753-764, (2013).

DOI: 10.1007/978-3-642-40313-2_66

Google Scholar

[15] J. Barnat, J. Havlíček, amd P. Ročkai. Distributed LTL Model Checking with Hash Compaction. In To appear in proceedings of PASM/PDMC 2012., (2013).

DOI: 10.1016/j.entcs.2013.07.006

Google Scholar