Structural Phase Transition and Electronic Properties of MgCe under High Pressure from First-Principles Calculations

Article Preview

Abstract:

The structural stability of MgCe under high pressures has been investigated by using the first-principles plane-wave pseudopotential density functional theory within the local density approximation (LDA). The obtained results predict that MgCe in the Ba structure is predicted to be the most stable structure corresponding to the ground state, because of lowest total energy. MgCe undergoes a pressure-induced phase transition from the Ba structure to B32 structure at 36 GPa. And no further transition is found up to 120 GPa. In addition, the electronic structures of four structures of MgCe are also calculated and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-107

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.X. Liu, Q. Xu, D.M. Xiong, B. Lin and C.L. Meng: Vacuum 89 (2013), p.233.

Google Scholar

[2] X. Tian, L.M. Wang, J.L. Wang, Y.B. Liu, J. An and Z.Y. Cao: J. Alloy. Compd. 465 (2008), p.412.

Google Scholar

[3] J. Zhang, W.G. Li and Z.X. Guo: J. Magnesium Alloy. 1 (2013) p.31.

Google Scholar

[4] M. Sumida: J. Alloy. Compd. 460 (2008) p.619.

Google Scholar

[5] Q. Li, Q.D. Wang, Y.X. Wang, X.Q. Zeng and W.J. Ding: J. Alloy. Compd. 427 (2007), p.115.

Google Scholar

[6] Q. Chen, Z.W. Huang, Z.D. Zhao and C.K. Hu: Comp. Mate. Sci. 67 (2013), p.196.

Google Scholar

[7] X.F. Guo and D. Shechtman: J. Mater. Process. Tech. 187-188 (2007), p.640.

Google Scholar

[8] N. Birbills, M.A. Easton, A.D. Sudholz, S.M. Zhu and M.A. GibSon: Corros. Sci. 51 (2009), p.683.

Google Scholar

[9] X.M. Tao, Y.F. Ouyang, H.S. Liu, Y.P. Feng, Y. Du, Y.H. He and Z.P. Jin: J. Alloy. Compd. 509 (2011), p.6889.

Google Scholar

[10] X. Zhang, D. Kevor and M. Pekguleryuz: J. Alloy. Compd. 475 (2009), p.361.

Google Scholar

[11] X. Zhang, D. Kevorkov and M.O. Pekguleryuz: J. Alloy. Compd. 501 (2010), p.366.

Google Scholar

[12] D.W. Zhou, P. Peng and J.S. Liu: J. Alloy. Compd. 428 (2007), p.316.

Google Scholar

[13] D.M. Ceperley and B.J. Alder: Phys. Rev. Lett. 45 (1980), p.566.

Google Scholar

[14] J.P. Perdew and A. Zunger: Phys. Rev. B 23 (1981), p.5048.

Google Scholar

[15] D. Vanderbilt: Phys. Rev. B 41 (1990), p.7892.

Google Scholar

[16] S. Desgreniers and K. Lagarec. Phys. Rev. B 59 (1999), p.8467.

Google Scholar

[17] S.M. Alay-e-Abbas, N. Sabir, Y. Saeed and A. Shaukat: J. Alloy. Compd. 503 (2010), p.10.

Google Scholar

[18] Z.Y. Qiao, Z.H. Xu and H.L. Liu, in: Computerized Physical Chemistry of Metallurgy and Materials, edited by High Education Press Publishing, Beijing, 1999, p.57.

Google Scholar