A Characterization of Admissible Linear Estimator of Regression Coefficients in Variance Component Models

Article Preview

Abstract:

In the paper, for the variance component models we take the ordinary quadratic risk function, and consider the admissibility of the linear estimators of linear combinations of regression coefficients in the class of linear homogeneous and inhomogeneous estimators. We get the necessary and sufficient conditions for the linear estimators of linear combinations of regression coefficients to be admissible.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1162-1167

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Hou: Chin. J. Appl. Probab. Stat., Vol. 6 (1990) pp.22-32.

Google Scholar

[2] X. Z. Xu: J. Sys. Sci. Math. Scis., Vol. 13 (1993), pp.363-369.

Google Scholar

[3] Z. X. Sun and X. Z. Xu: Acta. Math. Appl. Sin. E, Vol. 21 (1998), pp.393-403.

Google Scholar

[4] L. C. Wu: Chin. J. Appl. Probab. Stat., Vol. 23 (2007), pp.254-264.

Google Scholar

[5] X. R. Chen, G. J. Chen, Q. G. Wu and L. C. Zhao: The theory of estimation of parameters in Linear model (Beijing Science and Technology Publication, Beijing 1985).

Google Scholar