Applications of Wavelet Neural Network for Prediction of CHF

Article Preview

Abstract:

In this study, a wavelet neural network (WNN) model for predicting critical heat flux (CHF) is set up. The WNN mode combining the properties of the wavelet transform and the advantages of Artificial Neural Networks (ANN) has some advantages of its globe optimal searching, quick convergence speed and solving non-linear problem. The database used in the analysis is from the 1960’s, including 126 data points which cover these parameter ranges: pressure P=100–1,000 kPa, mass flow rate G=40–500 kgm-2s-1, inlet subcooling ΔTsub=0–35C and heat flux Q=20–8,000 kWm-2. The WNN prediction results have a good agreement with experimental data. Simulation and analysis results show that the network model can effectively predict CHF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1282-1286

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Cannon, J.J.E. Slotine: Neurocomputing Vol. 9 (1995), p.293.

Google Scholar

[2] J. Chen, D.D. Bruns: Ind. Eng. Chem. Res. Vol. 34 (1995), p.4420.

Google Scholar

[3] S. Mukherjee, S.K. Nayar: Pattern Recognition Vol. 29 (1996), p.1369.

Google Scholar

[4] Y.C. Pati, P.S. Krishnaprasad: IEEE Trans. Neural Networks Vol. 4 (1993), p.73.

Google Scholar

[5] A. Sureshbabu, J.A. Farrell: IEEE Trans. Autom. Control Vol. 44 (1999), p.412.

Google Scholar

[6] J. Zhang, G.G. Walter, W. N.W. Lee: IEEE Trans. Signal Process. Vol. 43 (1995), p.1485.

Google Scholar

[7] Q.H. Zhang: IEEE Trans. Neural Networks Vol. 8 (1997), p.227.

Google Scholar

[8] Q.H. Zhang, A. Benveniste: IEEE Trans. Neural Networks Vol. 3 (1992), p.889.

Google Scholar

[9] Z.Y. Lou, Z.K. Shi: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, August 18-21 (2005).

Google Scholar

[10] T. Khayamian, M. Esteki: J. of Supercritical Fluids Vol. 32 (2004), p.73.

Google Scholar

[11] J. Li, D.F. Liu, X.R. Dai, Z. Zou, F.Q. Ding: Trans. Nonferrous Met. Soc. China Vol. 17 (2007), P. 1052.

Google Scholar

[12] W.Z. Cui, C.C. Zhu, H.P. Zhao: Thin Solid Films Vol. 473 (2005), p.224.

Google Scholar

[13] X.Y. Zhang, J.H. Qi, R.S. Zhang, M.C. Liu, Z.D. Hu, H.F. Xue, B.T. Fan: Computers and Chemistry Vol. 25 (2001), p.125.

Google Scholar

[14] W.J. Chen, Y. Lee, D.C. Groeneveld: Int. J. Heat Mass Transfer Vol. 22 (1979), p.973.

Google Scholar

[15] H.S. Ragheb, S.C. Cheng, D.C. Groeneveld: Int. J. Heat Mass Transfer Vol. 24 (1981), p.1127.

Google Scholar

[16] S.T. Wang, R.A. Seban: Int. J. Heat Mass Transfer Vol. 31 (1988), p.1189.

Google Scholar

[17] X.C. Huang, G. Bartsch, D. Schroeder-richter: Int. J. Heat Mass Transfer Vol. 37 (1994), p.803.

Google Scholar

[18] H.S. Ragheb, S.C. Cheng: J. Heat Transfer Vol. 101 (1979), p.381.

Google Scholar

[19] X.C. Huang, G. Bartsch: Int. J. Heat Mass Transfer Vol. 36 (1993), p.2601.

Google Scholar

[20] X.C. Huang, P. Weber, G. Bartsch: Int. Commun. Heat Mass Transfer Vol. 20 (1993), p.383.

Google Scholar

[21] S.C. Cheng, K.T. Heng, W. Ng: Int. J. Multiphase Flow Vol. 3 (1977), P. 495.

Google Scholar

[22] S.C. Cheng, W.W.L. Ng, K.T. Heng: Int. J. Heat Mass Transfer Vol. 21 (1978), P. 1385.

Google Scholar

[23] S.C. Cheng, W.W.L. Ng, K.T. Heng, D.C. Groeneveld: J. Heat Transfer Vol. 100 (1978), P. 382.

Google Scholar

[24] G.W. He: Master thesis of Xi'an Jiaotong University (1989).

Google Scholar

[25] Y.B. Qian, Z.W. Yu, D.N. Jia: Nucl. Sci. Eng. Vol. 14 (1994), p.213.

Google Scholar

[26] Z. R. Yuan: Artificial Neural Network and its Applications, Tsinghua University Press, Beijing, (2000), pp.118-119.

Google Scholar