[1]
H. Liu, L. Zhao, Z. Zhang, Y. Ou, Stochastic stability of Markovian jumping Hopfield neural networks with constant and distributed delays, Neurocomputing 72(2009) 3669-3674.
DOI: 10.1016/j.neucom.2009.07.003
Google Scholar
[2]
X. Lou, B, Cui, Delay-dependent stochastic stability of delayed Hopfield neural networks with Markovian jump parameters, J. Math. Appl. 328(2007) 316-326.
DOI: 10.1016/j.jmaa.2006.05.041
Google Scholar
[3]
L. Ronghua,P. Wan-kai, L. Ping-kei, Exponential stability of numerical solutions to stochastic delay Hopfield neural networks, Neurocomputing 73(2010) 920-926.
DOI: 10.1016/j.neucom.2009.09.007
Google Scholar
[4]
E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math. 125(2000) 297-307.
Google Scholar
[5]
U., E. Platen, Strong discrete time approximation of stochastic differential equations with time delay, Math. Comput. Simulation 54(2000) 189-205.
DOI: 10.1016/s0378-4754(00)00224-x
Google Scholar
[6]
M. Liu, W. Cao, Z. Fan, Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation, J. Comput. Appl. Math. 170(2004) 255-268.
DOI: 10.1016/j.cam.2004.01.040
Google Scholar
[7]
H. Zhang, S. Gan, L. Hu, The split-step backward Euler method for linear stochastic delay differential equations, J. Comput. and Appl. Math. 225 (2009) 558-568.
DOI: 10.1016/j.cam.2008.08.032
Google Scholar
[8]
D.J. Higham, X. Mao, A.M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal. 40(2002) 1041-1063.
DOI: 10.1137/s0036142901389530
Google Scholar
[9]
X. Mao, Stochastic Differnetial Equations and Applications, Horwood, (1997).
Google Scholar
[10]
Q. Zhou, L. Wan, Exponential stability of stochastic delayed Hopfield neural networks, Appl. Math. Comput. 199(2008) 84-89.
DOI: 10.1016/j.amc.2007.09.025
Google Scholar
[11]
C. Yuan, X. Mao, Convergence of the Euler- Maruyama method for stochastic differential equations with Markovian switching, Comput. Simulation 64(2004) 223-235.
DOI: 10.1016/j.matcom.2003.09.001
Google Scholar