[1]
Sherbrooke, C. C. Optimal Inventory Modeling of Systems(2nd edition). Boston: Kluwer Academic Publishers(2004).
Google Scholar
[2]
Sobel, M. J. Fill rates of single-stage and multistage supply systems. Manufacturing & Service Operations Management, Vol. 6 (2004), pp.41-52.
DOI: 10.1287/msom.1030.0027
Google Scholar
[3]
Browne, S. and P. H. Zipkin. Inventory models with continuous stochastic demands. The Annals of Applied Probability, (1991), 1, pp.419-435.
DOI: 10.1214/aoap/1177005875
Google Scholar
[4]
Axsater, S. A new decision rule for lateral transshipments in inventory systems. Management Science, Vol. 49(2003), pp.1168-1179.
DOI: 10.1287/mnsc.49.9.1168.16568
Google Scholar
[5]
Marklund, J. Centralized inventory control in a two-level distribution system with Poisson demand. Naval Research Logistics, Vol. 49(2002), pp.798-822.
DOI: 10.1002/nav.10040
Google Scholar
[6]
Turnovsky S.J. Method of Macroeconomic Dynamics. Cambridge Massachusetts: The MIT Press(2000).
Google Scholar
[7]
Marcelo Bianconi. Private information, growth, and asset prices with stochastic disturbances. International Review of Economic & Finance, Vol. 12(2003), pp.1-2.
DOI: 10.1016/s1059-0560(02)00141-7
Google Scholar
[8]
Kataoka H, Ken-ichi Semba. The neoclassical investment model and a new conversion law. Journal of Economics, Vol. 75(2002), pp.137-160.
DOI: 10.1007/s007120200010
Google Scholar
[9]
Fleming W H., S J Sheu. Risk-Sensitive control and an optimal investment model. Mathematical Finance, Vol. 10(2000), pp.197-213.
DOI: 10.1111/1467-9965.00089
Google Scholar
[10]
Calcagnini G, Saltari E. Real and financial uncertainty and investment decisions. Journal of Macroeconomics, Vol. 22(2000), pp.491-514.
DOI: 10.1016/s0164-0704(00)00142-7
Google Scholar