[1]
Zehang Sun, George Bebis, and Ronald Miller. On-Road Vehicle Detection: A Review. IEEE transactions on pattern analysis and machine intelligence. 2006, 28(5): 694-711.
DOI: 10.1109/tpami.2006.104
Google Scholar
[2]
Broggi, A., Caraffi, C., Fedriga, R.I., Grisleri, P. Obstacle Detection with Stereo Vision for Off-Road Vehicle Navigation. Computer Vision and Pattern Recognition 2005 (CVPR). IEEE Computer Society Conference on 25 June 2005: 65 - 73.
DOI: 10.1109/cvpr.2005.503
Google Scholar
[3]
Wang rongben,Li Linhui,Jin Lisheng,Guo Lie,and Zhao Yibing. Study on Binocular Vision Based Obstacle Detection Technology for Intelligent Vehicle. Journal of Image and Graphics, 2007, 12(12): 2158-2163.
DOI: 10.1109/robio.2009.5420839
Google Scholar
[4]
Seki,A. Okutomi,M. Robust Obstacle Detection in General Road Environment Based on Road Extraction and Pose Estimation. Intelligent Vehicles Symposium, 13-15 June, 2006: 437-444.
DOI: 10.1109/ivs.2006.1689668
Google Scholar
[5]
Novak G, Bais A, and Mahlknecht S. Simp le stereo vision system for real-time object recognition for an autonomous mobile robot[A]. Proceedings of IEEE International Conference on Computational Cybernetics[C] , Vienna, Austria, 2004: 213-216.
DOI: 10.1109/icccyb.2004.1437710
Google Scholar
[6]
SeS, Lowe D, Little J. Vision-based mobile robot localization and mapping using scale-invariant features[A]. Proceedings of IEEE International Conference on Robotics and Automation [C] , Seoul, Korean, 2001, 2: 2051-(2058).
DOI: 10.1109/robot.2001.932909
Google Scholar
[7]
P. Kovesi. Image Features From Phase Congruency. Videre: A Journal of Computer Vision Research. MIT Press. Vol. 1, No. 3, (1999).
Google Scholar
[8]
Zhang Yujin. Image processing and analysis. Beijing: Higher Education Press, 2002. 7.
Google Scholar