Hydraulics of Looping

Article Preview

Abstract:

This article describes the urgency of studying the reduction of hydraulic loss in terms of energy efficiency. Looping is a section of the pipeline, which is laid in parallel with the main pipeline. Distribution of expenses on Looping`s branches in the valid movement minimizes dissipation in the flow and, consequently, reduces the energy losses in the piping network. Literature describes the calculation of a system of parallel lines through quite cumbersome calculations. The purpose of this work is to create a method of simple and quick calculation of looping. The article describes the simplest case of the connection: every branch does not contain any nodes, neither a source nor wastewater. Testing calculation of looping is represented in three conditions: looping`s resistance coefficient shown, partial expenses` calculation is transformed to rotating circulants and looping`s statics equations coincide with necessary condition of a minimum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2403-2407

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Girgidov A.D., Prokof'ev V.A. Numeric modeling of the interaction of a turbulent flow and a granular medium / Water Resources. 1992. Т. 18. № 2. P. 128-134.

Google Scholar

[2] Tseytin D. N., Nemova D. V., Kurasova E. V. Autonomous power installation with complex power effective electroproviding / Construction of Unique Buildings and Structures. 2013. №5 (10). P. 1-11 (rus).

Google Scholar

[3] M. Saberia, H. Arabzadehb, A. Keshavarzc. Numerical Analysis of Buried Pipelines with Right Angle Elbow under Wave Propagation / Procedia Engineering. Volume 14. 2011. P. 3260–326.

DOI: 10.1016/j.proeng.2011.07.412

Google Scholar

[4] Girgidov A.A., Girgidov A.D., Fedorov M.P. Use of dispersing springboards to reduce near-bottom velocity in a toe basin / Power Technology and Engineering. 2012. Т. 46. № 2. P. 113-115.

DOI: 10.1007/s10749-012-0316-y

Google Scholar

[5] Bukhartsev V.N., Petrichenko M.R. Approximation of the depression curve of the inflow to an ideal trench / Power Technology and Engineering. 2011. Т. 44. № 5. P. 374-377.

DOI: 10.1007/s10749-011-0193-9

Google Scholar

[6] Girgidov A.D. Self-aeration of open channel flow / Power Technology and Engineering. 2012. Т. 45. № 5. P. 351-355.

DOI: 10.1007/s10749-012-0280-6

Google Scholar

[7] Girgidov A.D. Сalculating the liquid flow from a hole in a pressurized pipeline / Power Technology and Engineering. 2001. Т. 35. № 7. P. 348-352.

Google Scholar

[8] Hsu-HaoYanga, Yen-Liang Chen. Finding K shortest looping paths with waiting time in a time–window network / Applied Mathematical Modelling. Volume 30. Issue 5. May 2006. P. 458–465.

DOI: 10.1016/j.apm.2005.05.005

Google Scholar

[9] Girgidov A.D. Evaluation of water-hammer reduction in a pipe containing a deformable body / Power Technology and Engineering. 2010. Т. 44. № 1. P. 10-14.

DOI: 10.1007/s10749-010-0134-z

Google Scholar

[10] Altshul A.D. Gidravlicheskiyesoprotivleniya [Hydraulic resistance]. M.: Nedra, 1970. 216 p. (rus).

Google Scholar

[11] Bukhartsev V.N., Petrichenko M.R. Condition of mechanical-energy balance of an integral flow with a variable rate / Power Technology and Engineering. 2001. Т. 35. № 4. P. 189-194.

Google Scholar

[12] Petrichenko M.R., Khar'kov N.S. Experimental study of the pumping action of helical flow / Technical Physics. The Russian Journal of Applied Physics. 2009. Т. 54. № 7. P. 1063-1065.

DOI: 10.1134/s1063784209070238

Google Scholar

[13] Bukhartsev V.N., Petrichenko M.R. Nonsteady filtration in a uniform soil mass / Power Technology and Engineering. 2012. Т. 46. № 3. P. 198-200.

DOI: 10.1007/s10749-012-0331-z

Google Scholar

[14] Bukhartsev V.N., Petrichenko M.R. Problem of filtration in a uniform rectangular soil mass is solved by variational principles / Power Technology and Engineering. 2012. Т. 46. № 3. P. 185-189.

DOI: 10.1007/s10749-012-0329-6

Google Scholar

[15] Bukhartsev V.N., Petrichenko M.R. Nonsteady filtration in a uniform soil mass / Power Technology and Engineering. 2012. P. 1-3.

DOI: 10.1007/s10749-012-0331-z

Google Scholar

[16] Bukhartsev V.N., Petrichenko M.R. Problem of filtration in a uniform rectangular soil mass is solved by variational principles / Power Technology and Engineering. 2012. P. 1-5.

DOI: 10.1007/s10749-012-0329-6

Google Scholar

[17] Andriyashev M.M. Gidravlicheskiyeraschetyvodoprovodov i vodoprovodnykhsetey [Hydraulic calculations of water pipelines and water mains]. 109 p. (rus).

Google Scholar

[18] Petrichenko M.R. Spravochnikkonstruktora [Designer`s compendium]. SPb. Politekhnik. 2006. P. 419-445. (rus).

Google Scholar

[19] Molodtsov N.I., Petrichenko M.R. Opredeleniyeintensivnostiteplootdachi v sistemezhidkostnogookhlazhdeniyavtulkitsilindra [Determination of the intensity of heat transfer in liquid cooling system of cylinder liner]. / Dvigatelestroyeniye. №10. 1982. P. 27-29. (rus).

Google Scholar

[20] Petrichenko M.R. Konkretnyyezadachigidravlikiperemennogoraskhoda [The specific tasks of hydraulics variable rate]/ Lectures and reports of the 12-th international school on hydrodynamics. M.: RAN. 1999. P. 131-133. (rus).

Google Scholar

[21] Petrichenko M.R., Van Yuyyan. Gidravlicheskiyezadachiraschetasistemokhlazhdeniya / Dvigatelestroyeniye (K 100-letiyu N. Kh. Dyachenko) [Hydraulic calculation tasks cooling systems] / Propulsion engineering. SPb. SPbGU. 2004. P. 105-114. (rus).

Google Scholar

[22] Bukhartsev V.N., Petrichenko M.R. Gidravlicheskaya forma usloviyaekstremumadissipatsiimoshchnostidlyabeznapornykhpotokov v prizmaticheskikhruslakh [Hydraulic shape extremum conditions dissipation power for gravity flows in rectangular channels]/ Magazine of Civil Engineering. 2008. №2. P. 5-7. (rus).

Google Scholar

[23] Babenko A. P., Strelez I. V. Hydraulic size, as the main characteristic in calculating sump / Construction of Unique Buildings and Structures, 2013, №6 (11). P. 34-42. (rus).

Google Scholar

[24] Chunxia Long, Jianyu Guan. A method for determining valve coefficient and resistance coefficient for predicting gas flowrate / Experimental Thermal and Fluid Science. Volume 35. Issue 6. September 2011. P. 1162–1168.

DOI: 10.1016/j.expthermflusci.2011.04.001

Google Scholar

[25] Y. Peet , P. Sagaut, Y. Charron. Pressure loss reduction in hydrogen pipelines by surface restructuring / International Journal of Hydrogen Energy. Volume 34. Issue 21. November 2009. P. 8964–8973.

DOI: 10.1016/j.ijhydene.2009.08.035

Google Scholar

[26] GáborFekete, LászlóVarga. The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipelines / Engineering Failure Analysis. Volume 21. April 2012 . P. 21–30.

DOI: 10.1016/j.engfailanal.2011.12.002

Google Scholar

[27] Young-Do Jo, Daniel A. Crowl. Individual risk analysis of high-pressure natural gas pipelines / Volume 21. Issue 6. November 2008. P. 589–595.

DOI: 10.1016/j.jlp.2008.04.006

Google Scholar

[28] I.G. Baoku , B.I. Olajuwon , A.O. Mustapha. Heat and mass transfer on a MHD third grade fluid with partial slip flow past an infinite vertical insulated porous plate in a porous medium / International Journal of Heat and Fluid Flow. Volume 40. April 2013. P. 81–88.

DOI: 10.1016/j.ijheatfluidflow.2013.01.016

Google Scholar

[29] Petrichenko M.R. Extrem characteristics, available surface and «the principle of minimum dissipation» for gravity flows [Ekstremali, kharakteristiki, svobodnyyepoverkhnosti i «printsipminimumadissipatsii» dlyabeznapornykhpotokov] / Scientific-technical compendium of SPbSPU. 2013. №166. P. 179-182. (rus).

Google Scholar

[30] ShpakovskiyR. Yu. Printsipminimumadissipatsii i identifikatsiya temperatury poverkhnosti ispareniya [The principle of minimum dissipation and identification of surface temperature evaporation] / News of higher education institutions. Problems of energy. 2012. №7-8. P. 34-45. (rus).

Google Scholar

[31] Giorgio Sonnino, JarahEvslin. The minimum rate of dissipation principle / Physics Letters A. Volume 365. Issues 5–6. 11 June 2007. P. 364–369.

DOI: 10.1016/j.physleta.2007.01.076

Google Scholar

[32] H. Kozlu, B.B. Mikic, A.T. Patera Minimum-dissipation heat removal by scale-matched flow destabilization / International Journal of Heat and Mass Transfer. Volume 31. Issue 10. October 1988. P. 2023–(2032).

DOI: 10.1016/0017-9310(88)90113-5

Google Scholar

[33] Tao Sun, Paul Meakin, Torstein Jøssang A minimum energy dissipation model for drainage basins that explicitly differentiates between channel networks and hillslopes / Physica A: Statistical Mechanics and its Applications. Volume 210. Issues 1–2. 15 September 1994.P. 24–47.

DOI: 10.1016/0378-4371(94)00053-0

Google Scholar

[34] StrakhovichK.I. Prikladnayagazodinamika [Applied gas dynamics] L-M.: ONTI, 1937. 113 p. (rus).

Google Scholar