[1]
David G. Feingold, Richard S. Varga. Block diagonally dominant matrices and generalizations of the Gerschgorin Circle Theorem, Pacific J. Math., Vol. 1241-1250 (1962), p.12.
DOI: 10.2140/pjm.1962.12.1241
Google Scholar
[2]
Jinhua Zhou, Guorong Wang. Block idempotent matrices and generallized Schur complement, Applied Mathematics and Computation, Vol. 246-256(2007) p.188.
DOI: 10.1016/j.amc.2006.08.175
Google Scholar
[3]
HuangTingzhu, Li Wen. Block H-matrices and Spectrum of Block Matrices. Applied Mathematics and Mechanics, Vol. 236-240(2002), p.23.
DOI: 10.1007/bf02436566
Google Scholar
[4]
C.Y. Zhang, Y.T. Li, F. Chen. On Schur complement of block diagonally dominant matrices, Linear Algebra Appl., Vol. 533-546(2006), p.414.
DOI: 10.1016/j.laa.2005.10.046
Google Scholar
[5]
Chi-Ye Wu, Ting-zhu Huang. Stability of block LU factorization for block tridiagonal block H-Matrices, Journal of Computational and Applied Mathematics, Vol. 2673 -2684(2012), p.236.
DOI: 10.1016/j.cam.2012.01.003
Google Scholar
[6]
Li Qingchun, Liu Lei. Generalizations of Diagonal Dominance for Matrices. Journal of Jilin Teachers College, Vol. 4-7 (1996), p.17.
Google Scholar
[7]
You Zhaoyong, Huang Tingzhu. Properties of Two Classes of Partitioned Matrices and Sufficient Conditions for Positive Stability and Sub-positive Definity of a Matrix, Vol. 89-92(1995), p.12.
Google Scholar