Solving Discrete Dirichlet Problems on Spectral Finite Elements by Fast Domain Decomposition Algorithm

Article Preview

Abstract:

A key component of DD (domain decomposition) solvers for $hp$ discretizations of elliptic equations is the solver for the internal stiffness matrices of $p$-elements. We consider the algorithm of the linear complexity for solving such problems on spectral $p$-elements, which, therefore, in the leading DD solver plays the role of the second stage DD solver. It is based on the first order finite element preconditioning of the Orszag type for the reference element stiffness matrices. Earlier, for spectral elements, only fast solvers obtained with the use of special preconditioners in factored form were known. The most intricate part of the algorithm is the inter-subdomain Schur complement preconditioning by inexact iterative solver employing two preconditioners -- preconditioner-solver and preconditioner-multiplicator. From general point of view, the solver developed in the paper, is the DD solver for the discretization on a strongly variable in size and shape deteriorating mesh with the number of subdomains growing with the growth of the number of degrees of freedom.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2312-2329

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Axelsson, O. and Vassilevski, P. (1989). Algebraic multilevel preconditioning methods, i. Num. Math. 56, 2-3 : 157-177.

Google Scholar

[2] Bernardi, C. and Maday, Y. (1992). Polynomial interpolation results in Sobolev spaces, Journal of Computational and Applied Mathematics 43, 1-2, pp.53-80.

DOI: 10.1016/0377-0427(92)90259-z

Google Scholar

[3] Bernardi, C. and Maday, Y. (1992). Spectral approximation for elliptic boundary value problems, Mathematiques & Applications, Vol. iv (Springer-Verlag, Paris), (in French).

Google Scholar

[4] Bernardi, C. and Maday, Y. (1997). Spectral method, In P. Ciarlet and J. -L. Lions (eds. ), Handbook of numerical analysis, vol. V: Techniques of Scientific computing (Part 2) (North-Holland) : 209-485.

DOI: 10.1016/s1570-8659(97)80003-8

Google Scholar

[5] Beuchler, S. (2002). Multigrid solver for the inner problem in domain decomposition methods for p-fem, SIAM J. Num. Anal. 40, 4 : 928-944.

DOI: 10.1137/s0036142901393851

Google Scholar

[6] Beuchler, S., Schneider, R. and Schwab, C. (2004). Multiresolution weighted norm equivalence and applications, Numerische Mathematik 98, 1, pp.67-97.

DOI: 10.1007/s00211-003-0491-8

Google Scholar

[7] Canuto, C. (1994). Stabilization of spectral methods by finite element bubble functions, Computer Methods in Applied Mechanics and Engineering 116, 1-4 : 13-26.

DOI: 10.1016/s0045-7825(94)80004-9

Google Scholar

[8] Canuto, C., Hussani, M., Quarteroni, A. and Zang, A. (1988). Spectral Methods in Fluid Dynamics (Springer-Verlag, Berlin, Heidelberg).

Google Scholar

[9] Canuto, C. and Quarteroni, A. (1982). Approximation results for orthogonal polynomials in sobolev spaces, Math. Comp. 38 : 67-86.

DOI: 10.1090/s0025-5718-1982-0637287-3

Google Scholar

[10] Deville, M., Fischer, P. and Mund, E. (2002). High-Order Methods for Incompressible Fluid Flow (Cambridge University Press, Cambridge, England).

DOI: 10.1017/s0022112003005056

Google Scholar

[11] Deville, M.O. and Mund, E.H. (1985). Chebyshev pseudospectral solution of second order elliptic equations with finite element preconditioning. J. Comput. Phys., 60 : 517-533.

DOI: 10.1016/0021-9991(85)90034-8

Google Scholar

[12] Deville, M.O. and Mund, E.H. (1990). Finite-element preconditioning for pseudospectral solutions of elliptic problems. SIAM Journal on Scientific and Statistical Computations 1990; 11 : 311 - 342.

DOI: 10.1137/0911019

Google Scholar

[13] Dolgov, S.V., Khoromskij, B.N., Oseledets, I. and Tyrtyshnikov, E.E. (2011).

Google Scholar

[14] Dyakonov, E. (1989). Minimization of computational work. Asymptotically optimal algorithms for elliptic problems (Nauka, Moscow).

Google Scholar

[15] Griebel, M. and Oswald, P. (1995). On the abstract theory of additive and multiplicative Schwarz algorithms, Numerische Mathematik 70, 2 : 163-180.

DOI: 10.1007/s002110050115

Google Scholar

[16] Guo, B. and Wang, L. (2004). Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, Journal of Approximation Theory 128, 1 : 1-41.

DOI: 10.1016/j.jat.2004.03.008

Google Scholar

[17] Hackbusch, W., Khoromskij, B. N. and Kriemann, R. (2005). Direct schur complement method by domain decomposition based on h-matrix approximation, Computing and Visualization in the Sciences 8, 3/4 : 179-188.

DOI: 10.1007/s00791-005-0008-3

Google Scholar

[18] Hsiao, G., Khoromskij, B. and Wendland, W. (2001). Preconditioning for boundary element methods in domain decomposition, Eng. Analysis with Boundary Elements 25 : 323-338.

DOI: 10.1016/s0955-7997(01)00029-7

Google Scholar

[19] Ivanov, S. and Korneev, V. (1996). Preconditioning in the domain decomposition methods for the p-version with the hierarchical bases, Matematicheskoie modelirovanie (Mathematical Modeling) 8, 9 : 63-73.

Google Scholar

[20] Karniadakis, G. and Sherwin, S. (1999). Spectral hp element methods for CFD (Oxford University Press).

Google Scholar

[21] Khoromskij, B. and Wittum, G. (1999). Robust schur complement method for strongly anisotropic elliptic equations, J. Numer. Linear Algebra with Appl. 6 : 1-33.

DOI: 10.1002/(sici)1099-1506(199912)6:8<621::aid-nla164>3.0.co;2-f

Google Scholar

[22] Khoromskij, B. and Wittum, G. (2004). Numerical solution of elliptic differential equations by reduction to the interface (Springer, Berlin - New York).

Google Scholar

[23] Korneev, V. (2002). Local dirichlet problems on subdomains of decomposition in hp discretizations, and optimal algorithms for their solution, Matematicheskoie Modelirovanie (Mathematical Modelling) 14, 5 : 51-74.

Google Scholar

[24] Korneev, V. (2013). Fast domain decomposition type solver for stiffness matrices of reference p-elements Computational methods in applied mathematics, N 2: 161-184. Doi: 10. 1515/cmam2013-0003.

DOI: 10.1515/cmam-2013-0003

Google Scholar

[25] Korneev, V. (2013).

Google Scholar

[26] Korneev, V. and Jensen, S. (1997). Preconditioning of the p-version of the finite element method, Computer Meth. Appl. Mech. Engrg. 150, 1-4 : 215-238.

Google Scholar

[27] Korneev, V. and Langer, U. (2004).

Google Scholar

[28] Korneev, V., Poborchi, S. and Salgado, A. (2007).

Google Scholar

[29] Korneev, V. and Rytov A. (2005).

Google Scholar

[30] Korneev, V. and Rytov, A. (2007). Spectral discretizations of 3-d elliptic problems and fast domain decomposition methods, Computational Mathematics and Mathematical Physics 10 : 1727- -1745.

DOI: 10.1134/s0965542507100077

Google Scholar

[31] Korneev, V. and Rytov, A. (2008). Fast domain decomposition algorithm for discretizations of 3-d elliptic equations by spectral elements, Comput. Methods Appl. Mech. Engrg. 197 : 1433- 1446.

DOI: 10.1016/j.cma.2007.10.013

Google Scholar

[32] Nepomnyaschikh, S. (1991).

Google Scholar

[33] Oswald, P. (1999).

Google Scholar

[34] Orszag, A. (1980). Spectral methods for problems in complex geometries. Journal of Computational Physics, 37 : 70 - 92.

DOI: 10.1016/0021-9991(80)90005-4

Google Scholar

[35] Pflaum, C. (2000). Robust confergence of multilevel algorithms for convection-difusion equations, SIAM Journal on Numerical Analysis 37, 2 : 443-469.

DOI: 10.1137/s0036142998346870

Google Scholar

[36] Quarteroni, A. and Vali, A. (1999). Domain Decomposition Methods for Partial Differential Equations (Oxfort Sciences Publications).

Google Scholar

[37] Rytov, A. (2006).

Google Scholar

[38] Schieweck, N. (1986).

Google Scholar