[1]
Axelsson, O. and Vassilevski, P. (1989). Algebraic multilevel preconditioning methods, i. Num. Math. 56, 2-3 : 157-177.
Google Scholar
[2]
Bernardi, C. and Maday, Y. (1992). Polynomial interpolation results in Sobolev spaces, Journal of Computational and Applied Mathematics 43, 1-2, pp.53-80.
DOI: 10.1016/0377-0427(92)90259-z
Google Scholar
[3]
Bernardi, C. and Maday, Y. (1992). Spectral approximation for elliptic boundary value problems, Mathematiques & Applications, Vol. iv (Springer-Verlag, Paris), (in French).
Google Scholar
[4]
Bernardi, C. and Maday, Y. (1997). Spectral method, In P. Ciarlet and J. -L. Lions (eds. ), Handbook of numerical analysis, vol. V: Techniques of Scientific computing (Part 2) (North-Holland) : 209-485.
DOI: 10.1016/s1570-8659(97)80003-8
Google Scholar
[5]
Beuchler, S. (2002). Multigrid solver for the inner problem in domain decomposition methods for p-fem, SIAM J. Num. Anal. 40, 4 : 928-944.
DOI: 10.1137/s0036142901393851
Google Scholar
[6]
Beuchler, S., Schneider, R. and Schwab, C. (2004). Multiresolution weighted norm equivalence and applications, Numerische Mathematik 98, 1, pp.67-97.
DOI: 10.1007/s00211-003-0491-8
Google Scholar
[7]
Canuto, C. (1994). Stabilization of spectral methods by finite element bubble functions, Computer Methods in Applied Mechanics and Engineering 116, 1-4 : 13-26.
DOI: 10.1016/s0045-7825(94)80004-9
Google Scholar
[8]
Canuto, C., Hussani, M., Quarteroni, A. and Zang, A. (1988). Spectral Methods in Fluid Dynamics (Springer-Verlag, Berlin, Heidelberg).
Google Scholar
[9]
Canuto, C. and Quarteroni, A. (1982). Approximation results for orthogonal polynomials in sobolev spaces, Math. Comp. 38 : 67-86.
DOI: 10.1090/s0025-5718-1982-0637287-3
Google Scholar
[10]
Deville, M., Fischer, P. and Mund, E. (2002). High-Order Methods for Incompressible Fluid Flow (Cambridge University Press, Cambridge, England).
DOI: 10.1017/s0022112003005056
Google Scholar
[11]
Deville, M.O. and Mund, E.H. (1985). Chebyshev pseudospectral solution of second order elliptic equations with finite element preconditioning. J. Comput. Phys., 60 : 517-533.
DOI: 10.1016/0021-9991(85)90034-8
Google Scholar
[12]
Deville, M.O. and Mund, E.H. (1990). Finite-element preconditioning for pseudospectral solutions of elliptic problems. SIAM Journal on Scientific and Statistical Computations 1990; 11 : 311 - 342.
DOI: 10.1137/0911019
Google Scholar
[13]
Dolgov, S.V., Khoromskij, B.N., Oseledets, I. and Tyrtyshnikov, E.E. (2011).
Google Scholar
[14]
Dyakonov, E. (1989). Minimization of computational work. Asymptotically optimal algorithms for elliptic problems (Nauka, Moscow).
Google Scholar
[15]
Griebel, M. and Oswald, P. (1995). On the abstract theory of additive and multiplicative Schwarz algorithms, Numerische Mathematik 70, 2 : 163-180.
DOI: 10.1007/s002110050115
Google Scholar
[16]
Guo, B. and Wang, L. (2004). Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, Journal of Approximation Theory 128, 1 : 1-41.
DOI: 10.1016/j.jat.2004.03.008
Google Scholar
[17]
Hackbusch, W., Khoromskij, B. N. and Kriemann, R. (2005). Direct schur complement method by domain decomposition based on h-matrix approximation, Computing and Visualization in the Sciences 8, 3/4 : 179-188.
DOI: 10.1007/s00791-005-0008-3
Google Scholar
[18]
Hsiao, G., Khoromskij, B. and Wendland, W. (2001). Preconditioning for boundary element methods in domain decomposition, Eng. Analysis with Boundary Elements 25 : 323-338.
DOI: 10.1016/s0955-7997(01)00029-7
Google Scholar
[19]
Ivanov, S. and Korneev, V. (1996). Preconditioning in the domain decomposition methods for the p-version with the hierarchical bases, Matematicheskoie modelirovanie (Mathematical Modeling) 8, 9 : 63-73.
Google Scholar
[20]
Karniadakis, G. and Sherwin, S. (1999). Spectral hp element methods for CFD (Oxford University Press).
Google Scholar
[21]
Khoromskij, B. and Wittum, G. (1999). Robust schur complement method for strongly anisotropic elliptic equations, J. Numer. Linear Algebra with Appl. 6 : 1-33.
DOI: 10.1002/(sici)1099-1506(199912)6:8<621::aid-nla164>3.0.co;2-f
Google Scholar
[22]
Khoromskij, B. and Wittum, G. (2004). Numerical solution of elliptic differential equations by reduction to the interface (Springer, Berlin - New York).
Google Scholar
[23]
Korneev, V. (2002). Local dirichlet problems on subdomains of decomposition in hp discretizations, and optimal algorithms for their solution, Matematicheskoie Modelirovanie (Mathematical Modelling) 14, 5 : 51-74.
Google Scholar
[24]
Korneev, V. (2013). Fast domain decomposition type solver for stiffness matrices of reference p-elements Computational methods in applied mathematics, N 2: 161-184. Doi: 10. 1515/cmam2013-0003.
DOI: 10.1515/cmam-2013-0003
Google Scholar
[25]
Korneev, V. (2013).
Google Scholar
[26]
Korneev, V. and Jensen, S. (1997). Preconditioning of the p-version of the finite element method, Computer Meth. Appl. Mech. Engrg. 150, 1-4 : 215-238.
Google Scholar
[27]
Korneev, V. and Langer, U. (2004).
Google Scholar
[28]
Korneev, V., Poborchi, S. and Salgado, A. (2007).
Google Scholar
[29]
Korneev, V. and Rytov A. (2005).
Google Scholar
[30]
Korneev, V. and Rytov, A. (2007). Spectral discretizations of 3-d elliptic problems and fast domain decomposition methods, Computational Mathematics and Mathematical Physics 10 : 1727- -1745.
DOI: 10.1134/s0965542507100077
Google Scholar
[31]
Korneev, V. and Rytov, A. (2008). Fast domain decomposition algorithm for discretizations of 3-d elliptic equations by spectral elements, Comput. Methods Appl. Mech. Engrg. 197 : 1433- 1446.
DOI: 10.1016/j.cma.2007.10.013
Google Scholar
[32]
Nepomnyaschikh, S. (1991).
Google Scholar
[33]
Oswald, P. (1999).
Google Scholar
[34]
Orszag, A. (1980). Spectral methods for problems in complex geometries. Journal of Computational Physics, 37 : 70 - 92.
DOI: 10.1016/0021-9991(80)90005-4
Google Scholar
[35]
Pflaum, C. (2000). Robust confergence of multilevel algorithms for convection-difusion equations, SIAM Journal on Numerical Analysis 37, 2 : 443-469.
DOI: 10.1137/s0036142998346870
Google Scholar
[36]
Quarteroni, A. and Vali, A. (1999). Domain Decomposition Methods for Partial Differential Equations (Oxfort Sciences Publications).
Google Scholar
[37]
Rytov, A. (2006).
Google Scholar
[38]
Schieweck, N. (1986).
Google Scholar