Three-Dimensional Ultrafast Laser Micromachining of Silicon for Microsystems

Article Preview

Abstract:

The result of direct ablation of silicon by an 800 nm Ti:Sa femtosecond laser pulses are presented. The minimum size of the crater on the silica surface ~ 250 nm was obtained, and in the central region of this crater can be identified about 170 nm in depth. In the ablation mode by single pulses received ordered structure with a length of ~ 230 nm and width of ~ 1.8 um and a period of ~ 1 um. Increasing the number of pulses without changing the focus position leads to complex and heterogeneous structure of modifications of silicon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-201

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Stuart, B.C., Feit, M.D., Nanosecond-to-femtosecond laser-induced breakdown in dielectrics / Physical Review B - Condensed Matter and Materials Physics, V. 53, 1996, P. 1749-1761.

DOI: 10.1103/physrevb.53.1749

Google Scholar

[2] B. Wolff-Rottke, J. Ihlemann, H. Schmit, A. Scholl, Influence of the laser spot diameter on photo-ablation rates / Appl. Phys. A 60 (1995) 13–17.

DOI: 10.1007/bf01577606

Google Scholar

[3] B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63 (1996) 109–115.

DOI: 10.1007/bf01567637

Google Scholar

[4] Femtosecond laser-induced damage of gold films / Applied Surface Science, V. 253, I. 19, 2007, P. 7815-7819.

DOI: 10.1016/j.apsusc.2007.02.164

Google Scholar

[5] M. Yu. Babiy, S. S. Golik, A. V. Kolesnikov, F. G. Bystrov Femtosecond Laser Machining of Silica and Transparent Materials / Applied Mechanics and Materials, 2014, р128-132.

DOI: 10.4028/www.scientific.net/amm.525.128

Google Scholar

[6] P. Gravesen, J. Branebjerg and O. Sondergad, Microfluidics - a review, Tech. Digest, Micro Mechanics Europe "93, Neuchotel, Switzerland, 7 Sept., 1993, pp.143-164.

Google Scholar

[7] Dai Y, He M, Bian H, Lu B, Yann X. Femtosecond laser nanostructuring of silver film. Applied Physics A: Materials Science and Processing 2012; 106: 567–74.

DOI: 10.1007/s00339-011-6705-5

Google Scholar

[8] Ashkenasi D, Lorenz M, Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role ofincubation. Applied Surface Science 1999; 150: 101–6.

DOI: 10.1016/s0169-4332(99)00228-7

Google Scholar

[9] E. Stemme and G. Stemme, A novel piezoelectric valve-less fluid pump, Tech. Digest, 7th Int. Conf. Solid-State Sensors and Actuators (Transducers '93), Japan, 1993, pp.110-113.

DOI: 10.1109/sensor.1997.635363

Google Scholar

[10] Ik-Bu Sohn, Young-Chul Noh et al. Femtosecond laser ablation of polypropylene for breathable film, /Applied Surface Science 254 (2008) 4919–4924.

DOI: 10.1016/j.apsusc.2008.01.166

Google Scholar

[11] Poulain G, Boulord C, Blanc D, Kaminski A, Direct laser printing for highefficiency silicon solar cells fabrication. Appl. Surf. Sc. 2011; 257: 5241-5244.

DOI: 10.1016/j.apsusc.2010.11.015

Google Scholar

[12] Hermann S, Harder N. -P, Brendel R, Herzog D, Haferkamp H. Picosecond laser ablation of SiO2 layers on silicon substates. Appl. Phys. A 2010; 99: 151-158.

DOI: 10.1007/s00339-009-5464-z

Google Scholar

[13] R.R. Gattass, E. Mazur Femtosecond laser micromachining in transparent materials, / Nature publishing group, 2008, 218p.

Google Scholar

[14] F. Madani-Grasset, Y. Bellouard, Femtosecond laser micromachining of fused silica molds, Optics Express 18, 21826–21840 (2010).

DOI: 10.1364/oe.18.021826

Google Scholar