Facile and Effective Purification of Arc-Discharged Single-Walled Carbon Nanotubes by Centrifugation

Article Preview

Abstract:

Arc-discharged single-walled carbon nanotubes were purified by successive heating in the air, hydrochloric acid treatment, supersonic dispersion in aqueous sodium deoxycholic acid solution, and high-speed centrifugation. Scanning electron microscopy observation evidenced that amorphous carbon, metal/metal oxide nanoparticles, and non-tube carbon impurities are separated from single-walled carbon nanotubes step by step. The relative carbonaceous purity of the purified single-walled carbon nanotubes to the as-produced materials was estimated to be ~7.42 by solution/dispersion-phase near-IR spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-215

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Sgobba and M. G. Dirk, Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics , Chemical Society Reviews. 165-184 (2009), 38. 1.

DOI: 10.1039/b802652c

Google Scholar

[2] T. Fujigaya, O. Minoru and N. Naotoshi, Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area , Carbon. 3227-3232 (2009).

DOI: 10.1016/j.carbon.2009.07.038

Google Scholar

[3] M. Okamoto, F. Tsuyohiko and N. Naotoshi, Design of an Assembly of Poly (benzimidazole), Carbon Nanotubes, and Pt Nanoparticles for a Fuel‐Cell Electrocatalyst with an Ideal Interfacial Nanostructure, Small. 735-740(2009). 5. 6.

DOI: 10.1002/smll.200801742

Google Scholar

[4] P. Avouris, Z.H. Chen and P. Vasili, Carbon-based electronics, Nature nanotechnology. 605-615 (2007). 2. 10.

Google Scholar

[5] H. Hong, G. Ting and W. B. Cai, Molecular imaging with single-walled carbon nanotubes, Nano Today. 252-261(2009). 4. 3.

DOI: 10.1016/j.nantod.2009.04.002

Google Scholar

[6] S. Iijima and I. Toshinari, Single-shell carbon nanotubes of 1-nm diameter, Nature. 603-605(1993).

DOI: 10.1038/363603a0

Google Scholar

[7] D. S. Bethune, C. H. Klang and M. S. De Vries, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature. 605-607(1993).

DOI: 10.1038/363605a0

Google Scholar

[8] C. Journet, W. K. Maser and P. Bernier, Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature. 756-758(1997), 388. 6644.

DOI: 10.1038/41972

Google Scholar

[9] T. Guo and P. Nikolaev, Self-assembly of tubular fullerenes, The Journal of Physical Chemistry. 10694-10697(1995), 99. 27.

DOI: 10.1021/j100027a002

Google Scholar

[10] A. Thess and R. BLee, Crystalline ropes of metallic carbon nanotubes, Science-AAAS-Weekly Paper Edition. 483-487(1996), 273. 5274.

Google Scholar

[11] W. K. Maser, E. Munoz and A. M. Benito, Production of high-density single-walled nanotube material by a simple laser-ablation method, Chemical Physics Letters. 587-593(1998), 292. 4.

DOI: 10.1016/s0009-2614(98)00776-3

Google Scholar

[12] H. Dai, A. G. Rinzler and p. Nikolaev, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chemical Physics Letters. 471-475(1996), 260. 3.

DOI: 10.1016/0009-2614(96)00862-7

Google Scholar

[13] J. F. Colomer, C. Stephan, S. Lefrant, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method, Chemical Physics Letters. 83-89(2000), 317. 1.

DOI: 10.1016/s0009-2614(99)01338-x

Google Scholar

[14] A. C. Dillon, T. Gennett, K. M. Jones, J. L Alleman, P. A. Parilla and M. J. Heben, Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes , Advanced Materials. 1354-1358(1999), 11. 16.

DOI: 10.1002/(sici)1521-4095(199911)11:16<1354::aid-adma1354>3.0.co;2-n

Google Scholar

[15] K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman and R. E. Smalley, Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes , Chemical Physics Letters. 429-434(1998).

DOI: 10.1016/s0009-2614(97)01265-7

Google Scholar

[16] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker and W. A. Scrivens, Purification strategies and purity visualization techniques for single-walled carbon nanotubes , Journal of the American Chemical Society. 12736-12737(2004), 126. 40.

DOI: 10.1021/ja040082h

Google Scholar

[17] K. L Strong, D. P. Anderson, K. Lafdi, and J. N. Kuhn, Purification of carbon nanotube, Carbon. 1477-1488(2003), 41. 8.

DOI: 10.1016/s0008-6223(03)00014-9

Google Scholar

[18] S. R. C. Vivekchand, A. Govindaraj, M. M. Seikh, and C. N. R. Rao, The Journal of Physical Chemistry B. 6935-6937(2004), 108. 22.

Google Scholar

[19] J. Y. Xie, M. N. Ahmad, H. D. Bai, Assignment of the fine structure in the optical absorption spectra of soluble single-walled carbon nanotubes , Science China Chemistry. 2026-2032(2010), 53. 9.

Google Scholar

[20] Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang, and S. Iijima,  Purification of single-wall carbon nanotubes, Solid state communications. 35-37(1999), 112. 1.

DOI: 10.1016/s0038-1098(99)00278-1

Google Scholar

[21] M. E. Itkis, D. E. Perea, S. Niyogi, S. M. Rickard, M. A. Hamon, H. Hu and R. C. Haddon, Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy, Nano Letters. 309-314(2003), 3. 3.

DOI: 10.1021/nl025926e

Google Scholar

[22] L. H. Guo, L .H. Gong, F. L. Yuan, B. Zhang, X. T. Bai and Y. F. Lian, Absorption Spectrum of Highly Pure and Soluble Single-walled Carbon Nanotubes, Acta Chimica Sinica. 1936-1938(2005), 63. 20.

Google Scholar