[1]
T. Starner, and J. Paradiso, Low-Power Electronics Design, Chapter 45, CRC Press, New York, (2004).
Google Scholar
[2]
N. Sato, and et al., Novel MEMS Power Generator with Integrated Thermoelectric and Vibrational Devices, Proceedings of the 13th International Conference on Solid-state Sensors, Actuators and Microsystems, pp.295-298, Korea, (2005).
DOI: 10.1109/sensor.2005.1496415
Google Scholar
[3]
S. Turri, D. Miller, H. Ben Ahmed and B. Multon, Design of an Electro-Mechanical Portable System Using Natural Human Body Movements for Electricity Generation, Sensors and Actuators A: Physical, 116(3), pp.461-471, (2004).
Google Scholar
[4]
S. Beeby, M. Tudor and N. White, Energy Harvesting Vibration Sources for Microsystems Applications, Measurement Science and Technology, 2006(17), pp.175-195, (2006).
DOI: 10.1088/0957-0233/17/12/r01
Google Scholar
[5]
N. Stephen, On Energy Harvesting from Ambient Vibration, J. of Sound and Vibration, 293(1-2), pp.409-425, (2006).
DOI: 10.1016/j.jsv.2005.10.003
Google Scholar
[6]
S. Roundy, P. Wright and J. Rabaey, A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes, Computer Communications, 2003(26), pp.1131-1144, (2003).
DOI: 10.1016/s0140-3664(02)00248-7
Google Scholar
[7]
T. Markart, Light Harvesting for Quantum Solar Energy Conversion, Process in Quantum Electronics, 24(3-4), pp.107-186, (2000).
DOI: 10.1016/s0079-6727(00)00003-3
Google Scholar
[8]
P. Landsberg and V. Badescu, Solar Energy Vonversion: List of Efficiencies and Some Theoretical Considerations, Process in Quantum Electronics, 1998(22), pp.211-230, (1998).
DOI: 10.1016/s0079-6727(98)00012-3
Google Scholar
[9]
N. Shenck, and J. Paradiso, Energy Scavenging with shoe-mounted pizoelectrics, IEEE Micro, 21(3), pp.30-42, (2001).
DOI: 10.1109/40.928763
Google Scholar
[10]
R. Kornbluh, Electroelastomers: Applications of Dielectric Elastomer Transducers for Actuation, Generation, and Smart Structures, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, McGowan, R. ed., Vol. 4698, pp.254-270, (2002).
DOI: 10.1117/12.475072
Google Scholar
[11]
L. Rome, L. Flynn, E. M. Goldman and T. D. Yoo, Generating Electricity While Walking with Loads, Science, 309, pp.1725-1728, (2005).
DOI: 10.1126/science.1111063
Google Scholar
[12]
J. M. Donelan, Biomechanical Energy Harvesting: Generating Electricity During Walking with Minimal User Effort, Science, 319, pp.807-810, (2008).
DOI: 10.1126/science.1149860
Google Scholar
[14]
T. Kanesaka, Development of a thermal energy watch, Micromechatronics, vol. 43(3), pp.29-36, (1999).
Google Scholar
[15]
E. H'ausler, L. Stein and G. Harbauer, Implantable physiological power supply with PVDF film, Ferroelectrics, Vol. 60, p.277–282, (1984).
DOI: 10.1080/00150198408017528
Google Scholar
[16]
A. Crisan, Typing Power, United States Patent 5, 911, 529, (1999).
Google Scholar
[17]
L. H. Xie, the Automatic Winding Device of a Mechanical Watch Movement and Its Application in Energy Harvesting, Trans. of ASME, Journal of Mechanical Design, Vol. 131, Issue 8, (2008).
DOI: 10.1115/1.3151803
Google Scholar