[1]
Braga, G. E., Nakamura, R., & Furtado, T. As. Aeolian vibration of overhead transmission line cables: endurance limits. InTransmission and Distribution Conference and Exposition: Latin America, 2004 IEEE/PES (pp.487-492).
DOI: 10.1109/tdc.2004.1432428
Google Scholar
[2]
Migdalovici, Marcel A., Tudor D. Sireteanu, and Emil Matei E. Videa. About the aeolian vibration control of overhead line conductors. ASME-PUBLICATIONS-PVP 366 (1998): 119-122.
Google Scholar
[3]
Hongzhou, D., Songye, Z., & Zhaomin, W. (2004). Study on Dynamic Behaviour and Wind-induced Vibration Response of Long Span Transmission Line System [J]. Building Structure, 7, 006.
Google Scholar
[4]
Wolf, Hinko, et al. Using the energy balance method in estimation of overhead transmission line aeolian vibrations. Strojarstvo: časopis za teoriju i praksu u strojarstvu 50. 5 (2008): 269-276.
Google Scholar
[5]
Khier, W., M. Breuer, and F. Durst. Flow structure around trains under side wind conditions: a numerical study. Computers & Fluids 29. 2 (2000): 179-195.
DOI: 10.1016/s0045-7930(99)00008-0
Google Scholar
[6]
Li Renxian and Liu Yingqing. Numerical simulation of turbulent flow field around the high speed train. Chinese Journal of Applied Mechanics 18. 1 (2001): 6-13.
Google Scholar
[7]
Information on http: /www. cfd-online. com/Wiki/K-epsilon_models.
Google Scholar
[8]
Sweetman, Brian J. The SIMPLE Method for Solving the Navier-Stokes Equations. Continuity 1: 1.
Google Scholar
[9]
2006, GB50135. Code for design of high-rising structures [S]. Diss. (2006).
Google Scholar