[1]
M. Fiedler and T. L. Markham, A classification of matrices of class Z, Linear Alg. Appl., 173(1992), pp.115-124.
Google Scholar
[2]
G. A. Johnson, A generalization of N-matrices, Linear Alg. Appl., 48(1982), pp.201-217.
Google Scholar
[3]
Ky Fan, some matrix inequalities, Abh. Math. Sem. Univ. Hamburg, 29(1966), pp.185-196.
Google Scholar
[4]
A. Berman and R. Plemmons, Nonnegative matrices in the Mathematical Science, Academic, New York, (1979).
Google Scholar
[5]
R. S. Smith, Some notes on Z-matrices, Linear Alg. Appl., 106(1988), pp.219-231.
Google Scholar
[6]
R. S. Smith, Bounds on the spectrum of nonnegative matrices and certain Z-matrices, Linear Alg. Appl., 129(1990), pp.13-28.
DOI: 10.1016/0024-3795(90)90295-n
Google Scholar
[7]
C. R. Johnson, Inverse M-matrices, Linear Alg. Appl., 47(1982), pp.195-216.
Google Scholar
[8]
G. A. Johnson, Inverse N0-matrices, Linear Alg. Appl., 64(1985), pp.215-222.
Google Scholar
[9]
Ying Chen, Notes on F0-matrices, Linear Alg. Appl., 142(1990), pp.167-172.
Google Scholar
[10]
Reinhard Nabben, R. S. Varge, On classes of inverse Z-matrices, Linear Alg. Appl., 223/224 (1995), pp.521-552.
DOI: 10.1016/0024-3795(95)92718-8
Google Scholar
[11]
Shmuel Friedland, R. Nabben, On the second real eigenvalue of nonnegative and Z-matrices, Linear Alg. Appl., 255(1997), pp.303-313.
DOI: 10.1016/s0024-3795(96)00033-x
Google Scholar
[12]
A. Kavcic, and J.M.F. Moura, Matrices with banded inverses: inversion algorithms and factorization of Gauss-Markov processes, Information Theory, IEEE Transactions on, vol. 46, no. 4, pp.1495-1509, Jul (2000).
DOI: 10.1109/18.954748
Google Scholar
[13]
Feng-Wen Sun, Yimin Jiang, J.S. Baras, On the convergence of the inverses of Toeplitz matrices and its applications, Information Theory, IEEE Transactions on, vol. 49, no. 1, pp.180-190, Jan (2003).
DOI: 10.1109/tit.2002.806157
Google Scholar