Some Properties of (Inverse)N0-Matrices with its Applications

Article Preview

Abstract:

In this paper we study some combinatorial properties and inequalities of some classes of Z-matrices. These matrices arise in many problems in the mathematical and physical sciences. We show that all (inverse) N0-matrices are irreducible and some eigenvalue inequalities of (inverse) N0-matrices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

795-798

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Fiedler and T. L. Markham, A classification of matrices of class Z, Linear Alg. Appl., 173(1992), pp.115-124.

Google Scholar

[2] G. A. Johnson, A generalization of N-matrices, Linear Alg. Appl., 48(1982), pp.201-217.

Google Scholar

[3] Ky Fan, some matrix inequalities, Abh. Math. Sem. Univ. Hamburg, 29(1966), pp.185-196.

Google Scholar

[4] A. Berman and R. Plemmons, Nonnegative matrices in the Mathematical Science, Academic, New York, (1979).

Google Scholar

[5] R. S. Smith, Some notes on Z-matrices, Linear Alg. Appl., 106(1988), pp.219-231.

Google Scholar

[6] R. S. Smith, Bounds on the spectrum of nonnegative matrices and certain Z-matrices, Linear Alg. Appl., 129(1990), pp.13-28.

DOI: 10.1016/0024-3795(90)90295-n

Google Scholar

[7] C. R. Johnson, Inverse M-matrices, Linear Alg. Appl., 47(1982), pp.195-216.

Google Scholar

[8] G. A. Johnson, Inverse N0-matrices, Linear Alg. Appl., 64(1985), pp.215-222.

Google Scholar

[9] Ying Chen, Notes on F0-matrices, Linear Alg. Appl., 142(1990), pp.167-172.

Google Scholar

[10] Reinhard Nabben, R. S. Varge, On classes of inverse Z-matrices, Linear Alg. Appl., 223/224 (1995), pp.521-552.

DOI: 10.1016/0024-3795(95)92718-8

Google Scholar

[11] Shmuel Friedland, R. Nabben, On the second real eigenvalue of nonnegative and Z-matrices, Linear Alg. Appl., 255(1997), pp.303-313.

DOI: 10.1016/s0024-3795(96)00033-x

Google Scholar

[12] A. Kavcic, and J.M.F. Moura, Matrices with banded inverses: inversion algorithms and factorization of Gauss-Markov processes, Information Theory, IEEE Transactions on, vol. 46, no. 4, pp.1495-1509, Jul (2000).

DOI: 10.1109/18.954748

Google Scholar

[13] Feng-Wen Sun, Yimin Jiang, J.S. Baras, On the convergence of the inverses of Toeplitz matrices and its applications, Information Theory, IEEE Transactions on, vol. 49, no. 1, pp.180-190, Jan (2003).

DOI: 10.1109/tit.2002.806157

Google Scholar