Probabilistic Teleportation via a Partially Entangled GHZ State being Known by only the Sender

Article Preview

Abstract:

In some typical schemes, the receivers must know the information of a non-maximally entangled state for quantum teleportation. In this paper, using a generalized measurement, we propose a scheme of probabilistic teleportation via a quantum GHZ-entangled state, which is known by only the sender.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

799-802

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70 (1993) 1895-1899.

DOI: 10.1103/physrevlett.70.1895

Google Scholar

[2] I. Chakrabarty, Teleportation via a mixture of a two qubit subsystem of an N-qubit W and GHZ state, Eur. Phys. J. D 57 (2010) 265-269.

DOI: 10.1140/epjd/e2010-00017-8

Google Scholar

[3] H.Q. Liang, J.M. Liu, S.S. Feng, J.G. Chen, Quantum teleportation with partially entangled states via noisy channels, Quantum Inf. Process 12 (2013) 2671-2687.

DOI: 10.1007/s11128-013-0555-3

Google Scholar

[4] X.W. Wang, Y.G. Shan, L.X. Xia, M.W. Lu, Dense coding and teleportation with one-dimensional cluster states, Phys. Lett. A 364 (2007) 7-11.

DOI: 10.1016/j.physleta.2006.11.056

Google Scholar

[5] N. Paul, J.V. Menon, S. Karumanchi, S. Muralidharan, P.K. Panigrahi, Quantum tasks using six qubit cluster states, Quantum Inf. Process 10 (2011) 619-632.

DOI: 10.1007/s11128-010-0217-7

Google Scholar

[6] A. Karlsson, M. Bourennane, Network model for a two-dimensional disordered electron system with spin-orbit scattering, Phys. Rev. A 58 (1998) 4394-4400.

DOI: 10.1103/physrevb.58.4394

Google Scholar

[7] L.Q. Wang, X.W. Zha, Two schemes of teleportation one-particle state by a three-particle GHZ state, Opt. Commun. 283 (2010) 4118-4121.

DOI: 10.1016/j.optcom.2010.06.017

Google Scholar

[8] V.N. Gorbachev, A.A. Rodichkina, A.I. Truilko, On preparation of the entangled W-states from atomic ensenbles, Phys. Lett. A 310 (2003) 339-343.

DOI: 10.1016/s0375-9601(03)00404-3

Google Scholar

[9] J. Joo, Y.J. Park, S. Oh, J. Kim, Quantum teleportation via a W state, New J. Phys. 5 (2003) 136-143.

Google Scholar

[10] P. Agrawal, A. Pati, Perfect teleportation and superdense coding with W states, Phys. Rev. A 74 (2006) 062320-062324.

Google Scholar

[11] P. Espoukeh, P. Pedram, Quantum Teleportation of Multi-Qubit GHZ States through Noisy Channels, arXiv: ph-quan 1403. 1147 (2014).

DOI: 10.1007/s11128-014-0766-2

Google Scholar

[12] H.J. Briegel, W. Dr, J.I. Cirac, P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81 (1998) 5932-5935.

DOI: 10.1103/physrevlett.81.5932

Google Scholar

[13] L.M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics, Nature 414 (2001) 413-418.

DOI: 10.1038/35106500

Google Scholar

[14] D. Gottesman, I.L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402 (1999) 390-393.

DOI: 10.1038/46503

Google Scholar

[15] S.D. Bartlett, W.J. Munro, Quantum teleportation of optical quantum gates, Phys. Rev. Lett. 90 (2003) 117901-117906.

DOI: 10.1103/physrevlett.90.117901

Google Scholar

[16] W.L. Li, C.F. Li, G.C. Guo, Probabilistic teleportation and entanglement matching, Phys. Rev. A 61 (2000) 034301-1-034301-3.

DOI: 10.1103/physreva.76.029904

Google Scholar

[17] H.Y. Dai, P.X. Chen, C.Z. Li, Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states, J. Opt. B 6 (2004).

DOI: 10.1088/1464-4266/6/1/017

Google Scholar

[18] J. Wei, H.Y. Dai, M. Zhang, A new scheme for probabilistic teleportation and its potential applications, Commun. Theor. Phys. 60 (2013) 651-657.

DOI: 10.1088/0253-6102/60/6/03

Google Scholar

[19] M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information, Cambridge, Cambridge University Press, (2000).

Google Scholar

[20] M. Zhang, H.Y. Dai, X.C. Zhu, X.W. Li, D.W. Hu, Control of the quantum open system via quantum generalized measurement, Phys. Rev. A 73 (2006) 032101-1-032101-5.

DOI: 10.1103/physreva.73.032101

Google Scholar