[1]
K. Papadikis, S. Gu and A.V. Bridgwater, CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B: Heat, momentum and mass transport in bubbling fluidised beds Chem. Eng. Sci. 64 (2009) 1036-1045.
DOI: 10.1016/j.ces.2008.05.045
Google Scholar
[2]
J T Cornelissen, F Taghipour, R Escudie, N Ellis and J R Grace, CFD modelling of a liquid-solid fluidized bed. Chemical Engineering Science 62 (2007) 6334-6348.
DOI: 10.1016/j.ces.2007.07.014
Google Scholar
[3]
F Depypere, J G Pieters and K Dewettinck, CFD analysis of air distribution in fluidized bed equipment. Powder Technology 145 (2004) 176-189.
DOI: 10.1016/j.powtec.2004.06.005
Google Scholar
[4]
M Vascellari, R Arora and C Hasse, Simulation of entrained flow gasification with advanced coal conversion submodels. Part 2 Char conversion. Fuel 118 (2014) 369-384.
DOI: 10.1016/j.fuel.2013.11.004
Google Scholar
[5]
M Rozainee, S P Ngo, A A Salema and K G Tan, Computational fluid dynamics modelling of rice husk combustion in a fluidized bed combustor. Powder Technology 203 (2010) 331-337.
DOI: 10.1016/j.powtec.2010.05.026
Google Scholar
[6]
Liu, H, Biglari, M, Elkamel, A., Lohi, A. The impacts of standard wall function and drag model on the turbulent modelling of gas-particle flow in a circulating fluidised bed riser. Can. J. Chem. Eng. 91 (2013) 704-714.
DOI: 10.1002/cjce.21782
Google Scholar
[7]
D. Gidaspow, R. Bezburuah, and J. Ding: Paper presented at the 7th Engineering Foundation Conference on Fluidization, (1992).
Google Scholar
[8]
J. Ding, D. Gidaspow, A bubbling fluidization model using kinetic theory of granular flow. AlChE J. 36 (1990) 523-538.
DOI: 10.1002/aic.690360404
Google Scholar
[9]
D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of Circulating Fluidized Bed, Kinetic Theory Approach. Paper presented at the 7th Engineering Foundation Conference on Fludization, (1992).
Google Scholar
[10]
M. Syamlal, W. Rogers, O'Brien T. J. MFIX Documentation: Volume 1, Theory Guide. National Technical Information Service, Springfield, VA, 1993. DOE/METC- 9411004, NTIS/DE9400087.
DOI: 10.2172/10145548
Google Scholar
[11]
D. G. Schaeffer. Instability in the Evolution Equations Describing Incompressible Granular Flow. J. Diff. Eq., 66 (1987) 19-50.
DOI: 10.1016/0022-0396(87)90038-6
Google Scholar
[12]
C. K. K. Lun, S. B. Savage, D. J. Jeffrey, N. Chepurniy. Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field. J. Fluid Mech., 140 (1984) 223-256.
DOI: 10.1017/s0022112084000586
Google Scholar
[13]
R. Govind, J. Shah, Modeling and simulation of an entrained flow coal gasifier. AlChE J. 30 1984 79-92.
DOI: 10.1002/aic.690300113
Google Scholar
[14]
L. D. Smoot, D. T. Pratt, Pulverized-Coal Combustion and Gasification, Theory and Applications for Continuous Flow Processes, Plenum Press, first ed., New York, (1979).
Google Scholar
[15]
B. F. Magnussen and B. H. Hjertager, On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. In 16th Symp. (Int'l. ) on Combustion. The Combustion Institute, (1976).
DOI: 10.1016/s0082-0784(77)80366-4
Google Scholar
[16]
Gomez-Barea, B Leckner, Modeling of biomass gasification in fluidized bed, Prog. Energy Combust. Sci. 36 (2010) 444-509.
DOI: 10.1016/j.pecs.2009.12.002
Google Scholar
[17]
P. Kaushal, T. Proll, H. Hofbauer, Model development and validation: Co-combustion of residual char, gases and volatile fuels in the fast fluidized combustion chamber of a dual fluidized bed biomass gasifier, Fuel, 86 (2007) 2687-2695.
DOI: 10.1016/j.fuel.2007.03.032
Google Scholar
[18]
H. Liu, A. Elkamer, A. Lohi, M. Biglari, Computational Fluid Dynamics Modeling of Biomass Gasification in Circulating Fluidized-Bed Reactor Using the Eulerian–Eulerian Approach Industrial and Engineering Chemistry Research 52 (2013) 18162-18174.
DOI: 10.1021/ie4024148
Google Scholar