[1]
Wu J.L., Chen C.H., Chen C.F., A unified derivation of operational matrices of integration for integration in system analysis, IEEE Proc. Int. Conf. on Information Technology: Coding and Computing, (2000) 436-442.
DOI: 10.1109/itcc.2000.844267
Google Scholar
[2]
Chen, C.F., Hsiao, C.H.: Haar wavelet method for solving lumped and distributed-parameter systems. IEEE Proc., Control Theory Appl., 144(1), (1997) 87–94.
DOI: 10.1049/ip-cta:19970702
Google Scholar
[3]
Garg M., Dewan L., An integrated approach for non-recursive formulation of connection-coefficients of orthogonal functions, Leonardo Journal of Sciences, vol. 20, (2012)1-14.
Google Scholar
[4]
Wu J.L., Chen C.H., Chen C.F., Numerical inversion of laplace transform using Haar wavelet operational matrices, IEEE Trans. On Circuits and Systems-Part I: Fundamental Theory and Applications, 48(1), (2001) 120-122.
DOI: 10.1109/81.903196
Google Scholar
[5]
Maleknejad K., Shahrezaee M., Khatami H., Numerical solution of integral equations system of the second kind by Block–Pulse functions, Applied Mathematics and Computation, 166, (2005) 15–24.
DOI: 10.1016/j.amc.2004.04.118
Google Scholar
[6]
Dorf R. C., Bishop R.H., Modern Control Systems, copyright 2008 by Pearson Prentice Hall, Eleventh Edition.
Google Scholar
[7]
Chen C.F., Hsiao C.H., A state-space approach to Walsh series solution of linear systems, Int. J. System Sci., (1965) 833-858.
Google Scholar
[8]
Chang R.Y., Wang M.L., Legendre polynomials approximation to dynamical linear state space equations with initial and boundary value conditions, Int. J. Control, 40, (1984) 215-232.
DOI: 10.1080/00207178408933269
Google Scholar
[9]
Hwang C., Shih Y.P., Laguerre operational matrices for fractional calculus and applications, Znt. J. Control, 34, (1981) 557-584.
DOI: 10.1080/00207178108922549
Google Scholar
[10]
Sifuzzaman M., Islam M.R., Ali M.Z., Application of Wavelet Transform and its Advantages Compared to Fourier Transform, Journal of Physical Sciences, Vol. 13, (2009) 121-134.
Google Scholar