Effect of Cooling Rate on the Microstructures and Mechanical Properties of Mg-Y Alloys

Article Preview

Abstract:

Magnesium (Mg) alloys with 30 weight percentage (wt.%) of yttrium (Y) were gravity cast using copper mold and copper mold with air cooling. The results were benchmarked with Mg-30Y alloys produced using steel mold casting. It was found that the Mg-30Y alloys cast using the copper mold with air cooling exhibited the best mechanical properties, whereby the compression strength and the Vickers hardness value peak at 633 MPa and 137.6 HV respectively. Microstructural observations show that with increasing cooling rate, and hence increasing molten metal solidification rate, the dendrite structures are much finer due to enhanced nucleation rate. This is due to limited time for the dendrites to coarsen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-139

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Bai, C. f. Fang and H. Hao, Effects of Yttrium on Microstructure and Mechanical Properties of Mg-Zn-Cu-Zr Alloys, Trans. NonFerrous Met. Soc. China. 20 (2010) s357-s360.

DOI: 10.1016/s1003-6326(10)60497-9

Google Scholar

[2] R. H. Li, F. S. Pan, B. Jiang, H. M. Yin and T. T. Liu, Effects of Yttrium and Strontium Additions on As-cast Microstructure of Mg-14Li-1Al Alloys, Trans. NonFerrous Met. Soc. China. 21 (2011) 778-783.

DOI: 10.1016/s1003-6326(11)60780-2

Google Scholar

[3] D. K. Xu, W. N. Tang, L. Liu, Y. B. Xu and E. H. Han, Effect of Y Concentration on the Microstructure and Mechanical Properties of As-cast Mg–Zn–Y–Zr Alloys, Journal of Alloys and Cpds. 432 (2007) 129-134.

DOI: 10.1016/j.jallcom.2006.05.123

Google Scholar

[4] H. H. Zou, X. Q. Zeng, C. Q. Zhai and W. J. Ding, The effects of Y element on microstructure and mechanical properties of Mg-5wt. %Zn-2wt. %Al alloy, Materials Science and Engineering A. 402 (2005) 142-148.

DOI: 10.1016/j.msea.2005.04.011

Google Scholar

[5] L. Yang, H. Feng, K. Q. Qiu, L. J. Chen and Z. Liu, Effect of Cooling Rate on Microstructure and Compressive Performance of AZ91 Mg Alloy, Trans. NonFerrous Met. Soc. China. 16 (2006) s1698-s1702.

Google Scholar

[6] X. Hui, W. Dong, G. L. Chen and K. F. Yao, Formation, Microstructure and Properties of Long-Period Order Structure Reinforced Mg-Based Bulk Metallic Glass Composites, Acta Materialia. 55 (2007) 907-920.

DOI: 10.1016/j.actamat.2006.09.012

Google Scholar

[7] M. Kinaka, H. Kato, M. Hasegawa and A. Inoue, High Specific Strength Mg-Based Bulk Metallic Glass Matrix Composite Highly Ductilized by Ti Dispersoid, Materials Science and Engineering A. 494 (2008) 299-303.

DOI: 10.1016/j.msea.2008.04.039

Google Scholar

[8] J. F. Wang, S. Huang, S. F. Guo, Y. Y. Wei and F. S. Pan, Effects of Cooling Rate on Microstructure, Mechanical and Corrosion Properties of Mg-Zn-Ca Alloy, Trans. NonFerrous Met. Soc. China. 23 (2013) 1930-(1935).

DOI: 10.1016/s1003-6326(13)62679-5

Google Scholar

[9] D. V. Louzguine-Luzgin and A. Inoue, Bulk Metallic Glasses: Formation, Structure, Properties, and Applications, in: K. H. J. Buschow (Eds. ), Handbook of Magnetic Materials, Elsevier, Oxford, 2013, pp.131-165.

DOI: 10.1016/b978-0-444-59593-5.00003-9

Google Scholar

[10] J. X. Zhou, J. Wang, J. Wang and Y. S. Yang, Eff. of RE and Sr add. on dendrite growth and phase pppt in AZ91D Mg alloy, Trans. NonFerrous Met. Soc. China. 20 (2010) s331 - s335.

DOI: 10.1016/s1003-6326(10)60492-x

Google Scholar

[11] Information on http: /link. springer. com/article/10. 1007%2Fs11669-010-9661-4/fulltext. html.

Google Scholar

[12] Z. Y. Jian, F. E. Chang, W. H. Ma, W. Yan, G. C. Yang and Y. H. Zhou, Nucleation and undercooling of metal melt, Science in China (Series E). 43 (2000) 113-119.

DOI: 10.1007/bf02916881

Google Scholar

[13] R. M. Srivastava, J. Eckert, W. Loser, B. K. Dhindaw and L. Schultz, Cooling Rate Evaluation for Bulk Amorphous Alloys from Eutectic Microstructures in Casting Process, Materials Transactions. 43 (2002) 1670-1675.

DOI: 10.2320/matertrans.43.1670

Google Scholar