Thermal Bubble Nucleation in a Nanochannel: An Experiment Investigation

Article Preview

Abstract:

We investigated the nanoscale thermal bubble nucleation based on the principle of Coulter counter. With micro-nanofabrication technologies, a device was designed and fabricated, and a detection platform was set up which was used to investigate the thermal bubble nucleation of aqueous solution confined in a nanochannel with a cross size of about 100 nm×100 nm. Results show that with the temperature of the solution confined in the nanochannel increasing, the current through the channel increases first and then decreases, and vanishes after a fluctuating period. It can be found that the generating thermal bubbles can hinder the current flowing through the nanochannel. In addition, the shrinking and expanding of thermal bubbles’ volume correspond to the increase and decrease of the current. Finally, the thermal bubbles block the nanochannel entirely. Through the experiment results, our device can be applied to investigate the complex behaviors of thermal bubble produced in aqueous solution confined in nanochannels, effectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. Tsai, L.W. Lin, A thermal-bubble-actuated micronozzle-diffuser pump, J. Microelectromech. S. 11(2002) 665-71.

DOI: 10.1109/jmems.2002.802909

Google Scholar

[2] S. Mitsuhiro, I. Tsubasa, U. Shinji, M. Takaaki, S. Kazuo, Fabrication of a bubble-driven arrayed actuator for a tactile display, J. Micromech. Microeng. 18(2008) 065012.

DOI: 10.1088/0960-1317/18/6/065012

Google Scholar

[3] D. Broek, M. Elwenspoek, Bubble nucleation in an explosive micro-bubble actuator, J. Micromech. Microeng. 18(2008) 064003.

DOI: 10.1088/0960-1317/18/6/064003

Google Scholar

[4] R. Furberg, B. Palm, S.H. Li, M. Toprak, M. Muhammed, The Use of a Nano- and Microporous Surface Layer to Enhance Boiling in a Plate Heat Exchanger, J. Heat Trans-T. ASME. 131(2009) 101010.

DOI: 10.1115/1.3180702

Google Scholar

[5] L.W. Lin, Microscale thermal bubble formation: Thermophysical phenomena and applications, Microscale Therm. Eng. 2(1998) 71-85.

DOI: 10.1080/108939598199991

Google Scholar

[6] L. Lin, K. Udell, A. Pisano, Liquid-vapor phase transition and bubble formation in micro structures, Therm. Sci. Eng. 2(1994) 52-9.

Google Scholar

[7] X. Peng, H. Hu, B. Wang, Bubble formation of liquid boiling in microchannels, Sci. China Ser E: Technol Sci. 41(1998) 404-10.

DOI: 10.1007/bf02917012

Google Scholar

[8] X.F. Peng, H.Y. Hu, B.X. Wang, Boiling nucleation during liquid flow in microchannels, Int J Heat Mass Transfer. 41(1998) 101-6.

DOI: 10.1016/s0017-9310(97)00096-3

Google Scholar

[9] X.F. Peng, D. Liu, D.J. Lee, Y. Yan, B.X. Wang, Cluster dynamics and fictitious boiling in microchannels, Int J Heat Mass Transfer. 43(2000) 4259-65.

DOI: 10.1016/s0017-9310(00)00056-9

Google Scholar

[10] J.T. Zhang, X.F. Peng, G.P. Peterson, Analysis of phase-change mechanisms in microchannels using cluster nucleation theory, Microscale Thermophys Eng. 4(2000) 177-87.

DOI: 10.1080/10893950050148133

Google Scholar

[11] X.D. Wang, X.F. Peng, Y. Tian, B.X. Wang, Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus, Heat Mass Transfer. 41(2005) 651-8.

DOI: 10.1007/s00231-004-0602-9

Google Scholar

[12] T. Kinjo, K. Ohguchi, K. Yasuoka, M. Matsumoto, Computer simulation of fluid phase change: vapor nucleation and bubble formation dynamics, Comput Mater Sci. 14(1999) 138-41.

DOI: 10.1016/s0927-0256(98)00088-3

Google Scholar

[13] W.B. Coulter, Means for counting particles suspended in a fluid, (1953).

Google Scholar

[14] W.H. Coulter, High speed automatic blood cell counter and cell size analyzer, Proc Natl Electron Conf. (1956).

Google Scholar

[15] O.A. Saleh, L.L. Sohn, Quantitative sensing of nanoscale colloids using a microchip Coulter counter, Rev Sci Instrum. 72(2001) 4449-51.

DOI: 10.1063/1.1419224

Google Scholar

[16] O.A. Saleh, L.L. Sohn, An Artificial Nanopore for Molecular Sensing, Nano Lett. 3(2002) 37-8.

Google Scholar

[17] A. Carbonaro, L.L. Sohn, A resistive-pulse sensor chip for multianalyte immunoassays, Lab on a Chip. 5(2005) 1155-60.

DOI: 10.1039/b504827c

Google Scholar

[18] V.J. Ashish, Z. Jiang, H. Jun, C. Joan, Detection and counting of micro-scale particles and pollen using a multi-aperture Coulter counter, Meas Sci Technol. 17(2006) 1706.

DOI: 10.1088/0957-0233/17/7/008

Google Scholar

[19] R. Rodriguez-Trujillo, C.A. Mills, J. Samitier, G. Gomila, Low cost micro-Coulter counter with hydrodynamic focusing, Microfluid Nanofluid. 3(2007) 171-6.

DOI: 10.1007/s10404-006-0113-8

Google Scholar

[20] X.F. Peng, Y. Tien, D.J. Lee, Bubble nucleation in microchannels: statistical mechanics approach, Int J Heat Mass Transfer. 44(2001) 2957-64.

DOI: 10.1016/s0017-9310(00)00323-9

Google Scholar

[21] J. Yang, S. Waltermire, Y. Chen, A.A. Zinn, T.T. Xu, D. Li, Contact thermal resistance between individual multiwall carbon nanotubes, Appl Phys Lett. 96 (2010 ).

DOI: 10.1063/1.3292203

Google Scholar

[22] M.M. Nayak, S. Srinivasulu, K. Rajanna, S. Mohan, A.E. Muthunayagam, Electrical and strain-sensitive behaviour of sputtered gold films, J Mater Sci Lett. 12(1993) 119-21.

DOI: 10.1007/bf00241866

Google Scholar