[1]
M.P. Nascimento, H.J.C. Voorwald, Considerations on corrosion and weld repair effects on the fatigue strength of a steel structure critical to the flight-safety, J. International Journal of Fatigue. 32(2010): 1200-1209.
DOI: 10.1016/j.ijfatigue.2009.12.017
Google Scholar
[2]
M.P. Nascimento, H.J.C. Voorwalda, J.C.P. Filho, Fatigue strength of tungsten inert gas-repaired weld joints in air plane critical structures, J. Journal of Materials Processing Technology. 211(2011): 1126-1135.
DOI: 10.1016/j.jmatprotec.2011.01.016
Google Scholar
[3]
M.X. Wang, G.N. Chen, Q. Pen, influence of shot peening on tension-tension fatigue property of laser aided forming aluminum alloy samples, J. Acta Aeronautica Et Astronautica Sinica. 32(7): 1351-1356.
Google Scholar
[4]
C.H. Lee, K.H. Chang, G.C. Jang, C.Y. Lee, Effect of weld geometry on the fatigue life of non-load-carrying fillet welded cruciform joints, J. Engineering Failure Analysis. 2009(16): 849-855.
DOI: 10.1016/j.engfailanal.2008.07.004
Google Scholar
[5]
C.D.M. Liljedahl, O. Zanellato, M. E. Fitzpatrick, J. Lin, L. Edwards, The effect of weld residual stresses and theirre-distribution with crack growth during fatigue under constant amplitude loading, J. Inter national Journal of Fatigue. 32(2010).
DOI: 10.1016/j.ijfatigue.2009.10.012
Google Scholar
[6]
D.P. Wang, L.X. Huo, Y.F. Zhang, H.Y. Jing, X.Q. Yang, Comparison of Ultrasonic Peening Method on Improving the Fatigue Behavior of Welded Joints with TIG Dressing under Variable-Amplitude Load, J. Acta Aeronautica Et Astronautica Sinica. 24(2): 183-188.
DOI: 10.1016/j.ijfatigue.2004.05.009
Google Scholar
[7]
H.Y. Fang. The welding structure, M. China Machine Press, Beijing, (2008).
Google Scholar
[8]
A.B. Pollack, F.J. Voellmecke, C.M. Sonsino, Fatigue strength improvement by ultrasonic impact treatment of highly stressed spokes of cast aluminium wheels, J. International Journal of Fatigue. 33(2011): 513-518.
DOI: 10.1016/j.ijfatigue.2010.09.017
Google Scholar
[9]
S. Roy, J.W. Fisher, B. T. Yen, Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT), J. International Journal of Fatigue. 25 (2003): 1239-1247.
DOI: 10.1016/s0142-1123(03)00151-8
Google Scholar
[10]
D.Q. Yin, D.P. Wang, H.Y. Jing, L.X. Huo, The effects of ultrasonic peening treatment on the ultra-long life fatigue behavior of welded joints, J. Materials and Design, 31(2010): 3299-3307.
DOI: 10.1016/j.matdes.2010.02.006
Google Scholar
[11]
Z.M. Li, Y.L. Zhu, Y. Xin, Influence of Ultrasonic Impact Treatment on Fatigue Properties of 2A12 Aluminum Alloy Welded Joints, J. Journal of Aeronautical Materials, 31(2011): 28-32.
Google Scholar
[12]
F.R. Chen, L.X. Huo, Y.F. Zhang, L. Zhang, F.J. Liu, G. Chen, Effects of electron beam local post-weld heat-treatment on the microstructure and properties of 30CrMnSiNi2A steel welded joint, J. Materials Processing Technology, 129(2002): 412-417.
DOI: 10.1016/s0924-0136(02)00704-5
Google Scholar
[13]
Editorial Committee of China Aeronautical Material Handbook, China Aeronautical Material Handbook, M. Beijing: Standards Press of China, (1988).
Google Scholar
[14]
H.J. Wu, W. Yao, F.L. Huang, L. Sh. Zhang, Y.J. Li. Experimental Study on Dynamic Mechanical Properties of Ultrahigh Strength 30CrMnSiNi2A Steel, J. Transactions of Beijing Institute of Technology, 30(2010): 258-262.
Google Scholar
[15]
J.H. Fan, Multiscale Analysis for Deformation and Failure of Materials, M. Beijing: Science Press, (2008).
Google Scholar