Solitary Wave Solutions, Periodic Wave Solutions and Folded Localized Excitations for the Dissipative Zabolotskaya-Khokhlov System

Article Preview

Abstract:

The mapping approach is a powerful tool to looking for the exact solutions for nonlinear partial differential equations. In this paper, using an improved mapping approach, a series of exact solutions (including solitary wave solutions and periodic wave solutions) of the (2+1)-dimensional dissipative Zabolotskaya Khokhlov (DZK) system is derived. Based on the derived solitary wave solution, we obtain some folded localized excitations of the DZK system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1712-1715

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.Q. Li, Y.L. Ma and M.P. Xu: (G'/G)-Expansion Method and Novel Fractal Structures for High-Dimensional Nonlinear Physical Equation, Acta Physica Sinica(2010)59(3): 1409-1415.

DOI: 10.7498/aps.59.1409

Google Scholar

[2] W.L. Zeng, S.H. Ma and Q.B. Ren: Exact solutions and soliton excitations for the (2+1)-dimensional Bogoyavlenskii-Schiff system, Acta Physica Sinica(2012) 61(11): 501-505.

DOI: 10.7498/aps.61.110508

Google Scholar

[3] S. Wang, X.Y. Tang and S.Y. Lou: Soliton Fission and Fusion: Burgers Equation and Sharma-Tasso-Olver Equation, Chaos, Solitons and Fractals(2004)19(1): 231-239.

DOI: 10.1016/j.chaos.2003.10.014

Google Scholar

[4] J.B. Zhang, J. Ji, Q. Shen and D.J. Zhang: A Lim it Sym m etry of M odified KdV Equation and Its Application. Commun.Theor.Phys (2011)55(6): 960-964.

Google Scholar

[5] S.H. Ma, J.P. Fang and C.L. Zheng: Folded Locailzed Excitations and Chaotic Patterns in a (2+1)-Dimensional Soliton System, Z. Naturforsch A(2008)62(1): 121-126.

DOI: 10.1515/zna-2008-3-401

Google Scholar

[6] S.H. Ma, J.Y. Qiang and J.P. Fang: The Interaction between Solitons and Chaotic Behaviours of (2+1)-Dimensional Boiti-Leon-Pempinelli System, Acta Physics Sinica (2007) 56(2): 620-626.

DOI: 10.7498/aps.56.620

Google Scholar

[7] S.H. Ma, J.P. Fang and H. P. Zhu: Dromion Soliton Waves and the Their Evolution in the Background of Jacobi Sine Waves, Acta Physics Sinica(2007) 56(8): 4319-4325.

DOI: 10.7498/aps.56.4319

Google Scholar

[8] S.H. Ma, J.P. Fang and C.L. Zheng: Complex wave excitations and chaotic patterns for a generalized (2+1)-dimensional korteweg de-vries system. Chin. Phys B (2008) 17(08): 2767-2773.

DOI: 10.1088/1674-1056/17/8/004

Google Scholar

[9] S.H. Ma, X.H. Wu, J.P. Fang and C.L. Zheng: New exact solutions for the (3+1)-Dimensional Jimbo-Miwa System. Chaos, Solitons and Fractals(2009)40(3): 1352-135.

DOI: 10.1016/j.chaos.2007.09.012

Google Scholar

[10] S.H. Ma, X.H. Wu, J.P. Fang and C.L. Zheng: Chaotic Solitons for the (2+1)-Dimensional Modified Dispersive Water-Wave System, Z. Naturforsch A(2007)61(1): 249-252.

DOI: 10.1515/zna-2006-5-606

Google Scholar