[1]
D. Stewart, A platform with sixdegree of freedom, Ime Proc. 80, 1965, Part1(15): p.371–368.
Google Scholar
[2]
S. -Zhang, Parallel Kinematic Machine . Beijing: China Machine Press, (2003).
Google Scholar
[3]
D. M. Ku, Direct displacement analysis of a platform mechanism, Mechanism and machine Theory. 1999, 34(5): pp: 453-465.
DOI: 10.1016/s0094-114x(98)00043-3
Google Scholar
[4]
J.P. Merlet, Parallel Robot , springer, (2006).
Google Scholar
[5]
Miller K, Design and Applications of Parallel Robots, in R.A. Jarvis and A. Zelinsky (Eds. ): Robotics Research, STAR 6, pp.161-173, (2003).
Google Scholar
[6]
Bianchi G, Tosatti M, Fassi I, Virtual prototyping ofparallel mechanisms, ImechE Proc Instn Mech Engrs Part K: J Multi-body Dynamics, 2002, 216: 21- 37.
DOI: 10.1243/146441902760029366
Google Scholar
[7]
K. H. H unt. Structural kinematics of in- para llel- actuated robot arm . T ransmissins Autom at. Desing, 1983, 105: 705-712.
Google Scholar
[8]
Neugebauer R, Drossel WG, Harzbecker C, Method for the optimization of kinematic and dynamic properties of parallel kinematic machines, Annals of the CIRP, 2006, 55(1): 1-4.
DOI: 10.1016/s0007-8506(07)60445-4
Google Scholar
[9]
Jazar R N, Theory of Applied Robotics: Kinematics, Dynamics, and Control, 2nd Edition, Springer, (2010).
Google Scholar
[10]
Lewis F L, Dawson D, Abdallah C, Robot Manipulator Control: Theory and Practice, 2nd Edition, Marcel Dekker Inc. (2004).
Google Scholar
[11]
Yaskawa Denki, Industrial articulated robot linear interpolation control device, US Patent No. 4528632. (1985).
Google Scholar