[1]
L. M Pecora, T. L Carroll, Synchronization in chaotic systems, Phys Rev Lett , Vol. 64 (1990),P. 821–824.
DOI: 10.1103/physrevlett.64.821
Google Scholar
[2]
E. Ott, C. Grebogi, J. A Yorke, Controlling chaos. Phys Rev Lett, Vol. 64, (1990),P. 1196–1199.
DOI: 10.1103/physrevlett.64.1196
Google Scholar
[3]
JH. Park, O. M Kwon, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons & Fractals , Vol. 23, (2005)P. 495–501.
DOI: 10.1016/j.chaos.2004.05.023
Google Scholar
[4]
F. WANG, C. Liu, A new criterion for chaos and hyperchaos synchronization using linear feedback control , Physics Letters A, Vol. 360(2), (2006) P. 274-278.
DOI: 10.1016/j.physleta.2006.08.037
Google Scholar
[5]
L. Du, J. Zhao, A synchronization criterion for dynamical networks with non-identical nodes and switching topology, Control Theory & Applications, Vol. 30(5), (2013),P. 649 – 655.
Google Scholar
[6]
J. Lu , X. Wu, X. Han, J. Lu, Adaptive feedback synchronization of a unified chaotic system, Phys Lett A, Vol. 329, (2004), P. 327–333.
DOI: 10.1016/j.physleta.2004.07.024
Google Scholar
[7]
L. Du, F. Wang, H. Zhang, H_Infinity Anti-Synchronization of Chaotic Systems with Unknown Parameters, Applied Mechanics and Materials, Vol. 336-338, (2013), P. 528-532.
DOI: 10.4028/www.scientific.net/amm.336-338.528
Google Scholar
[8]
F. Moez, An adaptive chaos synchronization scheme applied to secure communication, Chaos Soliton Fract. vol. 18, (2003),P. 141–148.
DOI: 10.1016/s0960-0779(02)00585-4
Google Scholar
[9]
C.C. Hua, X.P. Guan and X.L. Li, Adaptive observer-based control for class of chaotic systems, Chaos Solitons Fractals. Vol. 22, (2004), P. 103-110.
DOI: 10.1016/j.chaos.2003.12.072
Google Scholar
[10]
E. Solak,O. Morgul,U. Ersoy, Observer-based control of a class of chaotic systems, Phys. Lett. A. Vol. 279, (2001), P. 47-55.
Google Scholar