Observer-Based Synchronization of Switched Chaotic Systems

Article Preview

Abstract:

This paper presents a control scheme for the synchronization of switched chaotic systems. The general case that the error state information between master and slave chaotic systems is not available for design the controller, an adaptive observer-based error system is constructed and the controller is designed. Utilizing common Lyapunov function method, a synchronization criterion is given. Simulation shows the effectiveness and efficiency of the proposed scheme.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

993-996

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. M Pecora, T. L Carroll, Synchronization in chaotic systems, Phys Rev Lett , Vol. 64 (1990),P. 821–824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[2] E. Ott, C. Grebogi, J. A Yorke, Controlling chaos. Phys Rev Lett, Vol. 64, (1990),P. 1196–1199.

DOI: 10.1103/physrevlett.64.1196

Google Scholar

[3] JH. Park, O. M Kwon, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons & Fractals , Vol. 23, (2005)P. 495–501.

DOI: 10.1016/j.chaos.2004.05.023

Google Scholar

[4] F. WANG, C. Liu, A new criterion for chaos and hyperchaos synchronization using linear feedback control , Physics Letters A, Vol. 360(2), (2006) P. 274-278.

DOI: 10.1016/j.physleta.2006.08.037

Google Scholar

[5] L. Du, J. Zhao, A synchronization criterion for dynamical networks with non-identical nodes and switching topology, Control Theory & Applications, Vol. 30(5), (2013),P. 649 – 655.

Google Scholar

[6] J. Lu , X. Wu, X. Han, J. Lu, Adaptive feedback synchronization of a unified chaotic system, Phys Lett A, Vol. 329, (2004), P. 327–333.

DOI: 10.1016/j.physleta.2004.07.024

Google Scholar

[7] L. Du, F. Wang, H. Zhang, H_Infinity Anti-Synchronization of Chaotic Systems with Unknown Parameters, Applied Mechanics and Materials, Vol. 336-338, (2013), P. 528-532.

DOI: 10.4028/www.scientific.net/amm.336-338.528

Google Scholar

[8] F. Moez, An adaptive chaos synchronization scheme applied to secure communication, Chaos Soliton Fract. vol. 18, (2003),P. 141–148.

DOI: 10.1016/s0960-0779(02)00585-4

Google Scholar

[9] C.C. Hua, X.P. Guan and X.L. Li, Adaptive observer-based control for class of chaotic systems, Chaos Solitons Fractals. Vol. 22, (2004), P. 103-110.

DOI: 10.1016/j.chaos.2003.12.072

Google Scholar

[10] E. Solak,O. Morgul,U. Ersoy, Observer-based control of a class of chaotic systems, Phys. Lett. A. Vol. 279, (2001), P. 47-55.

Google Scholar