Preparation and Tribological Performance of Silica/Ethylene-Octene Copolymer Nanocomposites

Article Preview

Abstract:

The maleic anhydride-grafted ethylene-octene copolymer (POE-g-MAH) and 2, 3-epoxy propoxy propyltrimethoxysilicane (KH-560) modified nano-silica particles/ POE nanocomposites were fabricated by solution coprecipitation. Tribological behaviors of these nanocomposites were investigated using a pin-on-disk friction and wear tester under dry friction condition, and worn surfaces were studied by scan electron microscope (SEM) and color 3D laser scanning microscope, respectively. The results indicated that the addition of the low inclusion (more than 10 wt%) of nano-silica particles could improve the reducing-friction and anti-wear abilities of the POE matrix composites, and modified nano-silica as the filler are superior to nano-silica in terms of the ability of decreasing friction coefficient and wear rate of the POE polymer materials. In both cases, appropriate treatments could effectively improve the mechanical and tribological properties of the POE matrix composites due to the enhanced nanosilicas-matrix interfacial bonding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-46

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.A. Harper: Handbook of Plastics: Elastomers and Composites, 4th ed (Mcgraw–Hill, New York, 2002).

Google Scholar

[2] A.R. Kamdar, H.P. Wang, D.U. Khariwala, A. Taha, A. Hiltner and E. Baer: J Polym Sci Pol Phys, 47 (2009) 1554-1572.

Google Scholar

[3] H.W. Bai, Y. Wang, B. Song, Y.L. Li and L. Liu: J Polym Sci Pol Phys, 46 (2008) 577-588.

Google Scholar

[4] M.U. Wahit, A. Hassan, Z.A.M. Ishak and T. Czigany: Express Polym Lett, 3 (2009) 309-319.

Google Scholar

[5] S.Q. Lai, T.S. Li, F.D. Wang, X.J. Li and L. Yue: Wear, 262 (2007) 1048-1055.

Google Scholar

[6] Y.J. Shi, L.W. Mu, X. Feng and X.H. Lu: Mater Design, 32 (2011) 964-970.

Google Scholar

[7] L.H. Sun, Z.G. Yang and X.H. Li. Wea: 264 (2008) 693-700.

Google Scholar

[8] H.J. Song, Z.Z. Zhang, X.H. Men and Z.Z. Luo: Wear, 269 (2010) 79-85.

Google Scholar

[9] T.O. Larsen, T.L. Andersen, B. Thorning, A. Horsewell, M.E. Vigild, Wear, 265(2008), 203-213.

DOI: 10.1016/j.wear.2007.10.003

Google Scholar

[10] Y. Luo, X.Y. Yu, X.M. Dong, M.Z. Rong, M.Q. Zhang, Express Polym Lett, 4(2010), 131-140.

Google Scholar

[11] H.J. Zhang, Z.Z. Zhang, F. Guo, W. Jiang, K. Wang: J Compos Mater, 44 (2010) 2461-2472.

Google Scholar

[12] K.H. Hu, J. Wang, S. Schraube, Y.F. Xu, X.G. Hu, R. Stengler: Wear, 266 (2009) 1198-1207.

Google Scholar

[13] C. Shahar, D. Zbaida, L. Rapoport, H. Cohen, T. Bendikov, J. Tannous, F. Dassenoy and R. Tenne: Langmuir, 26 (2010) 4409-4414.

DOI: 10.1021/la903459t

Google Scholar

[14] Y.B. Guo, D.G. Wang and S.H. Liu: Appl Surf Sci, 256 (2010) 1714-1719.

Google Scholar

[15] D.P. Lim, J.Y. Lee, D.S. Lim, S.G. Ahn, I.W. Lyo: J Nanosci Nanotechno, 9(2009), 4197-4201.

Google Scholar

[16] Q. F. Li, D. G. Kim, D. Z. Wu, K. Lu and R. G. Jin: Polym. Eng. & Sci. 41(2001)2155-2161.

Google Scholar

[17] ASTM D2440-13, Standard test method for oxidation stability of mineral insulating oil.

Google Scholar

[18] ASTM G99-05, Standard test method for wear testing with a pin on disk apparatus.

Google Scholar