Effect of Fiber Loading on Tensile Properties of Cocoa Pod Husk Fibers Reinforced Thermoplastic Polyurethane Composites

Article Preview

Abstract:

In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced themoplastic polyurethane (TPU) was prepared by melt blending method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190°C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Increase of fibre loading showed increase in tensile strength and modulus and decreasing trend of strain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-28

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES. Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Materials & Design. 2012; 40: 299-303.

DOI: 10.1016/j.matdes.2012.04.003

Google Scholar

[2] Rozman HD, Ahmadhilmi KR, Abubakar A. Polyurethane (PU)—oil palm empty fruit bunch (EFB) composites: the effect of EFBG reinforcement in mat form and isocyanate treatment on the mechanical properties. Polymer Testing. 2004; 23: 559-65.

DOI: 10.1016/j.polymertesting.2003.11.004

Google Scholar

[3] Rozman HD, Tay GS. The effects of NCO/OH ratio on propylene oxide-modified oil palm empty fruit bunch-based polyurethane composites. Journal of Applied Polymer Science. 2008; 110: 3647–54.

DOI: 10.1002/app.28881

Google Scholar

[4] Rozman HD, Tay GS, Abubakar A, Kumar RN. Tensile properties of oil palm empty fruit bunch–polyurethane composites. European Polymer Journal. 2001; 37: 1759-65.

DOI: 10.1016/s0014-3057(01)00063-5

Google Scholar

[5] Mat Amin KA, Haji Badri K. Palm-based bio-composites hybridized with kaolinite. Journal of Applied Polymer Science. 2007; 105: 2488–96.

DOI: 10.1002/app.25536

Google Scholar

[6] Rozman HD, Yeo YS, Tay GS, Abubakar A. The mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol. Polymer Testing. 2003; 22: 617-23.

DOI: 10.1016/s0142-9418(02)00165-4

Google Scholar

[7] Bledzki AK, Zhang W, Chate A. Natural-fibre-reinforced polyurethane microfoams. Composites Science and Technology. 2001; 61: 2405-11.

DOI: 10.1016/s0266-3538(01)00129-4

Google Scholar

[8] Bakare IO, Okieimen FE, Pavithran C, Abdul Khalil HPS, Brahmakumar M. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Materials & Design. 2010; 31: 4274-80.

DOI: 10.1016/j.matdes.2010.04.013

Google Scholar

[9] Özgür Seydibeyoğlu M, Oksman K. Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Science and Technology. 2008; 68: 908-14.

DOI: 10.1016/j.compscitech.2007.08.008

Google Scholar

[10] Wilberforce S, Hashemi S. Effect of fibre concentration, strain rate and weldline on mechanical properties of injection-moulded short glass fibre reinforced thermoplastic polyurethane. Journal of Materials Science. 2009; 44: 1333-43.

DOI: 10.1007/s10853-008-3233-6

Google Scholar

[11] Vajrasthira C, Amornsakchai T, Bualek-Limcharoen S. Fiber-matrix interactions in aramid-short-fiber-reinforced thermoplastic polyurethane composites. Journal of Applied Polymer Science. 2003; 87: 1059-67.

DOI: 10.1002/app.11484

Google Scholar

[12] Correa RA, Nunes RCR, Filho WZF. Short fiber reinforced thermoplastic polyurethane elastomer composites. Polymer Composites. 1998; 19: 152-5.

DOI: 10.1002/pc.10086

Google Scholar

[13] El-Shekeil Y, Sapuan S, ABDAN K, Zainudin E, AL-SHUJA'A# O. Effect of pMDI isocyanate additive on mechanical and thermal properties of Kenaf fibre reinforced thermoplastic polyurethane composites. Bull Mater Sci. 2012; 35.

DOI: 10.1007/s12034-012-0403-6

Google Scholar

[14] El-Shekeil Y, Sapuan S, Khalina A, Zainudin E, Al-Shuja'a O. Effect of alkali treatment on mechanical and thermal properties of Kenaf fiber-reinforced thermoplastic polyurethane composite. Journal of Thermal Analysis and Calorimetry. 2012; 109: 1435-43.

DOI: 10.1007/s10973-012-2258-x

Google Scholar

[15] El-Shekeil YA, Salit MS, Abdan K, Zainudin ES. Development of a new kenaf bast fiber-reinforced thermoplastic polyurethane composite. BioResources. 2011; 6: 4662-72.

DOI: 10.4028/www.scientific.net/kem.471-472.297

Google Scholar

[16] Sapuan S, Pua F-l, El-Shekeil Y, AL-Oqla FM. Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Materials & Design. (2013).

DOI: 10.1016/j.matdes.2013.03.013

Google Scholar

[17] Y. A. El-Shekeil SMS, A. Khalina, E. S. Zainudin, O. M. Al-Shuja'a. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. eXPRESS Polymer Letters. 2012; 6: 1032–40.

DOI: 10.3144/expresspolymlett.2012.108

Google Scholar

[18] Vriesmann LC, Teófilo RF, Lúcia de Oliveira Petkowicz C. Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L. ) with citric acid. LWT - Food Science and Technology. 2012; 49: 108-16.

DOI: 10.1016/j.lwt.2012.04.018

Google Scholar