Electrochemical Self-Assembly of ZnO Nanosheetlike Structures

Article Preview

Abstract:

ZnO nanosheetlike structures were synthesized on zinc (Zn) foil substrates by electrochemical deposition method in ZnCl2 aqueous solutions at a temperature of 90 °C. In addition, the synthetic parameters in this work allow additional structural direction for ZnO nanoscaled structures. The morphology growth from smooth plane structures to nanosheet like structures could be accomplished by modifying the current densities of electrodeposition. In the photoluminescence (PL) spectra of the as-synthesized ZnO samples, typically there are few oxygen vacancies or interstitial Zn centers would be produced when the electrochemical deposition was performed out with a low current density. The UV peak is usually considered as the characteristic emission of ZnO nanosheetlike structures and attributed to the band edge emission or the exciton transition. All XRD diffraction peaks of ZnO nanosheetlike structures are shown in a good agreement with hexagonal structure. The average particle size was calculated using the Debye-Scherrer formula. ZnO nanosheetlike structures processed for various current densities have different size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, Nano Letters, vol. 3, 235-238 (2003).

Google Scholar

[2] P. D. Yang and C. M. Lieber, Science 273 1836 (1996).

Google Scholar

[3] A. M. Morales and C. m. Lieber, Science 279 208 (1998).

Google Scholar

[4] X. G. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc. 120 5343 (1998).

Google Scholar

[5] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4 89 (1996).

Google Scholar

[6] A. I. Klimovskaya, I. P. Ostrovskii, A. S. Ostrovskaya, Phys Status Solidi A 153 465 (1996).

Google Scholar

[7] Y. Hao, S. Lou, S. Zhou, R. Yuan, G. Zhu, N. Li, Nanoscale Res. Lett. 7, 100 (2012).

Google Scholar

[8] Y. Tseng, M. Chuang, Y. Chen, C. Wu, J. Nanotechnology, vol. 2012, 712850-712858 (2012).

Google Scholar

[9] L.S. Chuah, Z. Hassan, S. S. Tneh, S.G. Teo, Microelectronics International, 28, 8-11 (2011).

Google Scholar

[10] Z. L. Wang, Adv. Mater. 12, 1295 (2000).

Google Scholar

[11] S. Roy, H. Saha, C. K. Sarkar, Int. J. Smart Sensing and Intelligent Systems, 3, 605-620 (2010).

Google Scholar

[12] J. Y. Lee, Y. S. Choi, J. H. Kim, M. O. Park and S. Im, Thin Solid Films 403 533 (2002).

Google Scholar

[13] A. Mitra, A. P. Chatterjee and H. S. Maiti, Mater. Lett. 35 33 (1998).

Google Scholar

[14] N. Padmavathy and R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9 035004 (2008).

Google Scholar

[15] M. Gratzel, MRS Bull. 30 39374 (2005).

Google Scholar

[16] J. Y. Lao, J. G. Wen, Z. F. Ren, Nano Lett. 2002, 2, 1287.

Google Scholar

[17] J. Q. Hu, Y. Bando, J. H. Zhan, B. Li, T. Sekiguchi, Appl. Phys. Lett. 2003, 83, 4414.

Google Scholar

[18] L.S. Chuah, Z. Hassan, S. K. Mohd Bakhori, N. H. Al-Hardan, M.J. Abdullah, Composite Interfaces, 18, 441-448 (2011).

DOI: 10.1163/156855411x595843

Google Scholar

[19] B. Beverskog, I. Puigdomenech, Corros. Sci., 39, 107-114 (1997).

Google Scholar

[20] J. Wang, M. Tian, N. Kumar, T. E. Mallouk, Nano Letters, vol. 5, 1247-1253 (2005).

Google Scholar

[21] G. Li, C. Dawa, Q. Bu, X. Lu, Z. Ke, H. Hong, F. L. Zheng, C. Yao, G. Liu, Y. Tong, J. Phys. Chem. C, 111, 1919-1923 (2007).

Google Scholar

[22] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, T. Goto, Appl Phys Lett, 73, 1038–1042 (1998).

Google Scholar

[23] A. Umar, S.H. Kim, Y.S. Lee, K.S. Nahm, Y.B. Hahn, J Crystal Growth, 282, 131–136 (2005).

Google Scholar

[24] D. Gal, G. Hodes, D/ Lincot, H. W. Schock, Thin Solid Films, 361/362, 79-83 (2000).

DOI: 10.1016/s0040-6090(99)00772-5

Google Scholar

[25] C. Jin, A. Tiwari, R.J. Narayan, J. Appl. Phys. 98, 083707 (2005).

Google Scholar

[26] Y. -Y. Peng, T. -E. Hsieh, C. -H. Hsu, Nanotechnology 17, 174 (2006).

Google Scholar

[27] Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352 (2006).

Google Scholar

[28] T. Gao, T.H. Wang, Appl. Phys. A 80, 1451 (2005).

Google Scholar

[29] M. Tokumura, A. Ohta, H.T. Znad, Y. Kawase, Water Res. 40, 3775 (2006).

Google Scholar