Thermal Floorplan Base on Conjugate Gradient Solver in HotSpot

Article Preview

Abstract:

In this paper, we introduce an effective iterative method to solve the thermal linear system in HotSpot thermal floorplan, the iterative Conjugate Gradient Method is suitable to solve the traditional sparse matrix linear equations. We define a class of dummy sparse linear systems in iterative thermal floorplan algorithm, the iterative methods for linear system can be extended to apply to other iterative framework algorithm. We apply the conjugate gradient method to solve the thermal model in floorplan of VLSI physical design. The experiments' result shows that thermal floorplan using Conjugate gradient method is effective. The running time of our incremental conjugate gradient thermal solver with Jocabi Precondition is approximate 0.59 comparing with LU decomposition method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

908-912

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.C. Chang Y.W. Chang G.M. Wu, and S.W. Wu, B-trees: A new representation for nonslicing floorplans, in Proc. DAC, 2000, pp.458-463.

Google Scholar

[2] K. Skadron, K. Sankaranarayanan, S. Velusamy, D. Tarjan, M.R. Stan, and W. Huang. Temperature-Aware Micro architecture: Modeling and Implementation. ACM Transactions on Architecture and Code Optimization, 1(1): 94-125, Mar. (2004).

DOI: 10.1145/980152.980157

Google Scholar

[3] Paul E. Black, ed, sparse matrix, in Dictionary of Algorithms and Data Structures , , U.S. National Institute of Standards and Technology. 27 June 2006. Available http: /www. nist. gov/dads/HTML/sparsematrix. html.

Google Scholar

[4] Michael T. Heath. SCIENTIFIC COMPUTING: An Introductory Survey, Second Edition by published by McGraw-Hill, New York, (2002).

Google Scholar

[5] C. -H. Tsai and S. -M. S. Kang, Cell-Level Placement for Improving Substrate Thermal Distribution, IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 19, pp.253-266, Feb. (2000).

DOI: 10.1109/43.828554

Google Scholar

[6] K. Skadron, M. R. Stan, W. Huang, S. Velusamy,K. Sankaranarayanan, and D. Tarjan. Temperature-Aware Micro architecture: Extended Discussion and Results., University of Virginia Dept. of Computer Science Technical Report CS-2003-08, April. (2003).

DOI: 10.1109/mm.2003.1261387

Google Scholar

[7] Trefethen, Lloyd N.; Bau, David (1997), Numerical linear algebra, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-361-9. p.152, (1997).

Google Scholar

[8] Conjugate gradient method, From Wikipedia, the free encyclopedia http: /en. wikipedia. org/wiki/Preconditioned_conjugate_gradient_method.

Google Scholar

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, Science, vol. 220, no. 4598, May 13, 1983, pp.671-680.

DOI: 10.1126/science.220.4598.671

Google Scholar

[10] Preconditioners, Jack DongarraMon Nov 20 08: 52: 54 EST 1995 http: /www. netlib. org/utk/papers/templates/node51. html.

Google Scholar

[11] GUO, P. -N., CHENG, C. -K., AND YOSHIMURA, T. 1999. An O-tree representation of non-slicing floorplan and its applications. In Proceedings of the ACM/IEEE Design Automation Conference (California, June), 268¨C273.

DOI: 10.1145/309847.309928

Google Scholar

[12] C. H. Tsai and S. M. Kang, Cell-Level Placement for Improving Substrate Thermal Distribution, IEEE Trans. On Computer. -Aided Des, vol. 19, no. 2, pp.253-266, Feb. (2000).

DOI: 10.1109/43.828554

Google Scholar

[13] Wenjian Yu, Numerical Analysis and Algorithms, Tsinghua Univ. Press, 2011 (in Chinese), http: /learn. tsinghua. edu. cn: 8080/2003990088/index. htm.

Google Scholar