Analysis and Prediction of Surface Integrity in Machining: A Review

Article Preview

Abstract:

Surface integrity is widely used for evaluating the quality of machined components. It has a set of various parameters which can be grouped as: (a) topography parameters such as surface roughness, textures and waviness (b) mechanical parameters such as residual stresses and hardness, and (c) metallurgical state such as microstructure, phase transformation, grain size and shape, inclusions etc. Surface roughness and residual stresses are among the most significant parameters of surface integrity, so that it is worth investigating them particularly. Many factors affect the surface integrity of machined components, including cutting parameters, tool parameters, material properties and vibrations. We can make prediction and optimization for surface integrity by taking advantage of these factors. This paper reviews previous studies and gives a comprehensive summary of surface integrity in the following order: introduction of surface integrity, main parameters of surface integrity, factors affecting surface integrity, prediction and optimization for surface integrity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1002-1020

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Davim, J.; Surface Integrity in Machining. Springer London Dordrecht Heidelberg New York, (2010).

Google Scholar

[2] Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 2011, 51 (3): 250–280.

DOI: 10.1016/j.ijmachtools.2010.11.003

Google Scholar

[3] Suraratchai, M. ;Limido, J.; Mabru, C.; Chieragatti, R. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. International Journal of Fatigue, 2008, 30 (12): 2119–2126.

DOI: 10.1016/j.ijfatigue.2008.06.003

Google Scholar

[4] Ryu, J.J.; Shrotriya, P. Influence of roughness on surface instability of medical grade cobalt-chromium alloy (CoCrMo) during contact corrosion-fatigue. Applied Surface Science, 2013, 273 (15): 536–541.

DOI: 10.1016/j.apsusc.2013.02.076

Google Scholar

[5] Boothroyd, G. Fundamentals of Metal Machining and Machine Tools. Scripta Book Company: Washington. DC, the United States, (1975).

Google Scholar

[6] Fladischer, K.; Litwin, D.; Galas, J.; Weeks, A.E.; MacLaren, D.A.; Lammegger, R.; Sormann, H.; Ernst, W.E.; Holst, B. An optical profilometer for characterizing complex surfaces under high vacuum conditions. Precision Engineering, 2008, 32(3): 182–185.

DOI: 10.1016/j.precisioneng.2007.08.001

Google Scholar

[7] Lee, D. -H. 3-Dimensional profile distortion measured by stylus type surface profilometer. Measurement, 2013, 46(1): 803–814.

DOI: 10.1016/j.measurement.2012.09.022

Google Scholar

[8] Sugawara, H.; Yanagihara, M.; Asaoka, S.; Okusawa, M.; Maezawa, H. Development and performance of a profilometer for measurement of mirror surface figure. Journal of Electron Spectroscopy and Related Phenomena, 1996, 80: 485–488.

DOI: 10.1016/0368-2048(96)03022-8

Google Scholar

[9] Wennerberg, A.; Ohlsson, R.; Rosén, B. -G.; Andersson, B. Characterizing three-dimensional topography of engineering and biomaterial surfaces by confocal laser scanning and stylus techniques. Medical Engineering & Physics, 1996, 18(7): 548–556.

DOI: 10.1016/1350-4533(95)00005-4

Google Scholar

[10] Yilbas, Z.; Hasmi, M.S.J. Surface roughness measurement using an optical system. Journal of Materials Processing Technology, 1999, 88(1–3, 15): 10–22.

DOI: 10.1016/s0924-0136(98)00356-2

Google Scholar

[11] Kuo, C. -C.; Chao, C. -H. Rapid optical measurement of surface roughness of polycrystalline thin films. Optics and Lasers in Engineering, 2010, 48(12): 1166–1169.

DOI: 10.1016/j.optlaseng.2010.07.007

Google Scholar

[12] Yilbas, Z.; Hashmi, M.S.J. An optical method and neural network for surface roughness measurement. Optics and Lasers in Engineering, 1997, 28(6): 395–409.

DOI: 10.1016/s0143-8166(97)00066-3

Google Scholar

[13] Bjuggren, M.; Krummenacher, L.; Mattsson, L. Noncontact surface roughness measurement of engineering surfaces by total integrated infrared scattering. Precision Engineering, 1997, 20(1): 33–45.

DOI: 10.1016/s0141-6359(97)00001-9

Google Scholar

[14] Tsong, R.M.; Schmid, M.; Nagl, C.; Varga, P.; Davis, R.F.; Tsong, I.S.T. Scanning tunneling microscopy studies of niobium carbide (100) and (110) surfaces. Surface Science, 1996, 366(1): 85–92.

DOI: 10.1016/0039-6028(96)00804-7

Google Scholar

[15] Semaltianos, N.G.; Wilson, E.G. Investigation of the surface morphology of thermally evaporated thin gold films on mica, glass, silicon and calcium fluoride substrates by scanning tunneling microscopy. Thin Solid Films, 2000, 366(1-2): 111–116.

DOI: 10.1016/s0040-6090(00)00710-0

Google Scholar

[16] Song, Z.; Pascual, J.I.; Conrad, H.; Horn, K.; Rust, H. -P. Surface states of d character imaged by scanning tunneling microscopy. Surface Science, 2001, 491(1-2): 39–47.

DOI: 10.1016/s0039-6028(01)01434-0

Google Scholar

[17] Nanda, K.K.; Sarangi, S.N.; Sahu, S.N. Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films. Applied Surface Science, 1998, 133(4): 293–297.

DOI: 10.1016/s0169-4332(98)00212-8

Google Scholar

[18] Carneiro, K.; Jensen, C.P.; Jørgensen, J.F.; Garnœs, J.; McKeown, P.A. Roughness Parameters of Surfaces by Atomic Force Microscopy. CIRP Annals - Manufacturing Technology, 1995, 44(1): 517–522.

DOI: 10.1016/s0007-8506(07)62376-2

Google Scholar

[19] Rönnow, D.; Lindström, T.; Isidorsson, J.; Ribbing, C. -G. Surface roughness of oxidised copper films studied by atomic force microscopy and spectroscopic light scattering. Thin Solid Films, 1998, 325(1-2): 92–98.

DOI: 10.1016/s0040-6090(98)00503-3

Google Scholar

[20] Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Materials & Design, 2012, 35: 572-588.

DOI: 10.1016/j.matdes.2011.08.022

Google Scholar

[21] Chen, L.Y.; Wang, G.Z.; Tan, J.P.; Xuan, F.Z.; Tu, S.T. Effects of residual stress on creep damage and crack initiation in notched CT specimens of a Cr-Mo-V steel. Engineering Fracture Mechanics, 2013, 97: 80-91.

DOI: 10.1016/j.engfracmech.2012.10.020

Google Scholar

[22] Lammi, C.J.; Lados, D.A. Effects of residual stresses on fatigue crack growth behavior of structural materials: Analytical corrections. International Journal of Fatigue, 2011, 33(7): 858-867.

DOI: 10.1016/j.ijfatigue.2011.01.019

Google Scholar

[23] Ren, X.D.; Zhan, Q.B.; Yang, H.M.; Dai, F.Z.; Cui, C.Y.; Sun, G.F.; Ruan, L. The effects of residual stress on fatigue behavior and crack propagation from laser shock processing-worked hole. Materials & Design, 2013, 44: 149-154.

DOI: 10.1016/j.matdes.2012.07.024

Google Scholar

[24] Wang, L.; Bei, H.; Gao, Y.F.; Lu, Z.P.; Nieh, T.G. Effect of residual stresses on the hardness of bulk metallic glasses. Acta Materialia, 2011, 59(7): 2858-2864.

DOI: 10.1016/j.actamat.2011.01.025

Google Scholar

[25] Viotti, M.R.; Dolinko, A.E.; Galizzi, G.E.; Kaufmann, G.H. A portable digital speckle pattern interferometry device to measure residual stresses using the hole drilling technique. Optics and Lasers in Engineering, 2006, 44(10): 1052-1066.

DOI: 10.1016/j.optlaseng.2005.09.004

Google Scholar

[26] Sicot, O.; Gong, X.L.; Cherouat, A.; Lu, J. Influence of experimental parameters on determination of residual stress using the incremental hole-drilling method. Composites Science and Technology, 2004, 64(2): 171-180.

DOI: 10.1016/s0266-3538(03)00278-1

Google Scholar

[27] Olabi, A.G.; Benyounis, K.Y.; Hashmi, M.S.J. Application of Response Surface Methodology in Describing the Residual Stress Distribution in CO2 Laser Welding of AISI304. Strain, 2007, 43 (1): 37-46.

DOI: 10.1111/j.1475-1305.2007.00305.x

Google Scholar

[28] Mainjot, A.K.; Schajer, G.S.; Vanheusden, A.J.; Sadoun, M.J. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: Measurement by hole-drilling. Dental Materials, 2012, 28(4): 378-384.

DOI: 10.1016/j.dental.2011.11.009

Google Scholar

[29] Mainjot, A.K.; Schajer, G.S.; Vanheusden, A.J.; Sadoun, M.J. Residual stress measurement in veneering ceramic by hole-drilling. Dental Materials, 2011, 27(5): 439–444.

DOI: 10.1016/j.dental.2010.12.002

Google Scholar

[30] Olabi, A.G.; Hashmi, M.S.J. Stress relief procedures for low carbon steel (1020) welded components. Journal of Materials Processing Technology, 1996, 56(1-4): 552–562.

DOI: 10.1016/0924-0136(95)01869-7

Google Scholar

[31] Rickert, T.; Fix, R.; Suominen, L. Comparison of Residual Stress Measurements Using X-Ray Diffraction and PRISM-Electronic Speckle Pattern Interferometry and Hole-Drilling. SAE Technical Paper, 2007, doi: 10. 4271/2007-01-0804.

DOI: 10.4271/2007-01-0804

Google Scholar

[32] Oladijo, O.P.; Venter, A.M.; Cornish, L.A.; Sacks, N. X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates. Surface and Coatings Technology, 2012, 206(23): 4725–4729.

DOI: 10.1016/j.surfcoat.2012.01.044

Google Scholar

[33] Chen, S. -L.; Shen, B.; Zhang, J. -G.; Wang, L.; Sun, F. -H. Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 3021–3026.

DOI: 10.1016/s1003-6326(11)61565-3

Google Scholar

[34] Mahmoodi, M.; Sedighi, M.; Tanner, D.A. Investigation of through thickness residual stress distribution in equal channel angular rolled Al 5083 alloy by layer removal technique and X-ray diffraction. Materials & Design, 2012, 40: 516–520.

DOI: 10.1016/j.matdes.2012.03.029

Google Scholar

[35] Polatidis, E.; Frankel, P.; Wei, J.; Klaus, M.; Comstock, R.J.; Ambard, A.; Lyon, S.; Cottis, R.A.; Preuss, M. Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. Journal of Nuclear Materials, 2013, 432(1-3): 102–112.

DOI: 10.1016/j.jnucmat.2012.07.025

Google Scholar

[36] Kirchlechner, C.; Martinschitz, K.J.; Daniel, R.; Klaus, M.; Genzel, C.; Mitterer, C.; Keckes, J. Residual stresses and thermal fatigue in CrN hard coatings characterized by high-temperature synchrotron X-ray diffraction. Thin Solid Films, 2010, 518(8): 2090–(2096).

DOI: 10.1016/j.tsf.2009.08.011

Google Scholar

[37] Sharman, A.R.C.; Hughes, J.J.; Ridgway, K. Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Machining Science and Technology: An International Journal, 2004, 8(3): 399-414.

DOI: 10.1081/mst-200039865

Google Scholar

[38] Sun, J.; Guo Y.B. A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. Journal of Materials Processing Technology, 2009, 209(8): 4036–4042.

DOI: 10.1016/j.jmatprotec.2008.09.022

Google Scholar

[39] Pawade, R.S.; Joshi, S.S.; Brahmankar, P.K. Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. International Journal of Machine Tools and Manufacture, 2008, 48(1): 15–28.

DOI: 10.1016/j.ijmachtools.2007.08.004

Google Scholar

[40] Sharman, A.R.C.; Hughes, J.I.; Ridgway, K. An analysis of the residual stresses generated in Inconel 718™ when turning. Journal of Materials Processing Technology, 2006, 173(3): 359–367.

DOI: 10.1016/j.jmatprotec.2005.12.007

Google Scholar

[41] Capello, E. (2005) Residual stresses in turning: Part I: Influence of process parameters. Journal of Materials Processing Technology, 160(2): 221–228.

DOI: 10.1016/j.jmatprotec.2004.06.012

Google Scholar

[42] Sharman, A.R.C.; Hughes, J.I.; Ridgway, K. An analysis of the residual stresses generated in Inconel 718 when turning. Journal of Materials Processing Technology, 2006, 173(3): 359–367.

DOI: 10.1016/j.jmatprotec.2005.12.007

Google Scholar

[43] Sridhar, B.R.; Devananda, G.; Ramachandra, K.; Bhat, R. Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. Journal of Materials Processing Technology, 2003, 138(1-3): 628–634.

DOI: 10.1016/s0924-0136(03)00612-5

Google Scholar

[44] Sadat, A.B.; Reddy, M.Y.; Wang, B.P. Plastic deformation analysis in machining of Inconel 718 nickel base superalloy using both experimental and numerical methods. International Journal of Mechanical Sciences, 1991, 33(10): 829–842.

DOI: 10.1016/0020-7403(91)90005-n

Google Scholar

[45] Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(9): 879–887.

DOI: 10.1016/j.ijmachtools.2004.02.016

Google Scholar

[46] Pawade, R.S.; Joshi, S.S.; Brahmankar, P.K.; Rahman, M. An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. Journal of Materials Processing Technology, 2007, 192–193: 139–146.

DOI: 10.1016/j.jmatprotec.2007.04.049

Google Scholar

[47] Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(9): 879–887.

DOI: 10.1016/j.ijmachtools.2004.02.016

Google Scholar

[48] Matsumoto, Y.; Hashimoto, F.; Lahoti, G. Surface Integrity Generated by Precision Hard Turning. CIRP Annals - Manufacturing Technology, 1999, 48(1): 59–62.

DOI: 10.1016/s0007-8506(07)63131-x

Google Scholar

[49] Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(14): 1481–1491.

DOI: 10.1016/j.ijmachtools.2004.05.005

Google Scholar

[50] Dahlman, P.; Gunnberg, F.; Jacobson, M. The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. Journal of Materials Processing Technology, 2004, 147(2): 181–184.

DOI: 10.1016/j.jmatprotec.2003.12.014

Google Scholar

[51] Li, B. A review of tool wears estimation using theoretical analysis and numerical simulation technologies. International Journal of Refractory Metals and Hard Materials, 2012, 35: 143–151.

DOI: 10.1016/j.ijrmhm.2012.05.006

Google Scholar

[52] Che-Haron, C.H. Tool life and surface integrity in turning titanium alloy. Journal of Materials Processing Technology, 2001, 118(1-3): 231–237.

DOI: 10.1016/s0924-0136(01)00926-8

Google Scholar

[53] Sharman, A.R.C.; Hughes, J.I.; Ridgway, K. Surface integrity and tool life when turning Inconel 718 using ultra-high pressure and flood coolant systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008, 222(6): 653–664.

DOI: 10.1243/09544054jem936

Google Scholar

[54] Aspinwall, D.K.; Dewes, R.C.; Ng, E. -G.; Sage, C.; Soo, S.L. The influence of cutter orientation and workpiece angle on machinability when high-speed milling Inconel 718 under finishing conditions. International Journal of Machine Tools and Manufacture, 2007, 47(12-13): 1839–1846.

DOI: 10.1016/j.ijmachtools.2007.04.007

Google Scholar

[55] Chen, L.; El-Wardany, T.I.; Harris, W.C. Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses. CIRP Annals - Manufacturing Technology, 2004, 53(1): 95–98.

DOI: 10.1016/s0007-8506(07)60653-2

Google Scholar

[56] Thiele, J.D.; Melkote, S.N. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. Journal of Materials Processing Technology, 1999, 94(2-3): 216–226.

DOI: 10.1016/s0924-0136(99)00111-9

Google Scholar

[57] Hua,J.; Shivpuri,R.; Cheng X.M.; Bedekar,V.; Matsumoto,Y.; Hashimoto,F.; Watkins, T.R. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Materials Science and Engineering: A, 2005, 394(1-2): 238–248.

DOI: 10.1016/j.msea.2004.11.011

Google Scholar

[58] Aguiar, M.M.D.; Diniz, A.E.; Pederiva,R. Correlating surface roughness, tool wear and tool vibration in the milling process of hardened steel using long slender tools. International Journal of Machine Tools and Manufacture, 2013, 68: 1–10.

DOI: 10.1016/j.ijmachtools.2013.01.002

Google Scholar

[59] Lin, S.C.; Chang, M.F. Studies on the effects of vibrations on the surface finish using a surface topography simulation model for turning. International Journal of Machine Tools and Manufacture, 1998, 38(7): 763–782.

DOI: 10.1016/s0890-6955(97)00073-4

Google Scholar

[60] Jiang, H.; Long, X.H.; Meng, G. Study of the correlation between surface generation and cutting vibrations in peripheral milling. Journal of Materials Processing Technology, 2008, 208(1-3): 229–238.

DOI: 10.1016/j.jmatprotec.2007.12.127

Google Scholar

[61] Brehl, D.E.; Dow, T.A. Review of vibration-assisted machining. Precision Engineering, 2008, 32(3): 153–172.

DOI: 10.1016/j.precisioneng.2007.08.003

Google Scholar

[62] Babitsky, V.I.; Kalashnikov, A.N.; Meadows, A.; Wijesundara, A.A.H.P. ultrasonically assisted turning of aviation materials. Journal of Materials Processing Technology, 2003, 132(1-3): 157–167.

DOI: 10.1016/s0924-0136(02)00844-0

Google Scholar

[63] Azouzi, R.; Guillot, M. On-line Prediction of Surface Finish and Dimensional Deviation in Turning Using Neural Network Based Sensor Fusion. International Journal of Machine Tools and Manufacture, 1997, 37 (9): 1201–1217.

DOI: 10.1016/s0890-6955(97)00013-8

Google Scholar

[64] Huang, B.; Chen, J.C. An In-process Neural Network-based Surface Roughness Prediction System Using a Dynamometer in End Milling Operations. International Journal of Advanced Manufacturing Technology, 2003, 21 (5): 339–347.

DOI: 10.1007/s001700300039

Google Scholar

[65] Guo, Y.B.; Ammula, S.C. Real-time acoustic emission monitoring for surface damage in hard machining. International Journal of Machine Tools and Manufacture, 2005, 45(14): 1622–1627.

DOI: 10.1016/j.ijmachtools.2005.02.007

Google Scholar

[66] Axinte, D.A.; Dewes, R.C. Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. Journal of Materials Processing Technology, 2002, 127(3): 325–335.

DOI: 10.1016/s0924-0136(02)00282-0

Google Scholar

[67] Tsuchida, K.; Kawada, Y.; Kodama, S. A Study on the Residual Stress Distributions by Turning. Bulletin of JSME, 1975, 116(18): 123-130.

DOI: 10.1299/jsme1958.18.123

Google Scholar

[68] Fuh, K. -H.; Wu, C. -F. A Residual-Stress Model for the Milling of Aluminum Alloy (2014-T6). Journal of Materials Processing Technology, 1995, 51(1-4): 87-105.

DOI: 10.1016/0924-0136(94)01355-5

Google Scholar

[69] El-Axir, M.H. A method of modeling residual stress distribution in turning for different materials. International Journal of Machine Tools and Manufacture, 2002, 42(9): 1055–1063.

DOI: 10.1016/s0890-6955(02)00031-7

Google Scholar

[70] Kwon, Y.; Ertekin, Y.; Tseng, T. Characterization of tool wear measurement with relation to the surface roughness in turning. Machining Science and Technology: An International Journal, 2004, 8 (1): 39–51.

DOI: 10.1081/mst-120034239

Google Scholar

[71] El-Wahab, A.I.; Kishawy, H.A. A new method to improve the surface quality during CNC machining. International Journal of Production Research, 2000, 38(16): 3711–3723.

DOI: 10.1080/00207540050175969

Google Scholar

[72] Ulutan, D.; Alaca, B.E.; Lazoglu, I. Analytical modeling of residual stresses in machining. Journal of Materials Processing Technology, 2007, 183: 77–87.

DOI: 10.1016/j.jmatprotec.2006.09.032

Google Scholar

[73] Dai, K.; Villegas, J.; Stone, Z.; Shaw, L. Finite element modelling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process. Acta Materialia, 2004, 52(20): 5771–5782.

DOI: 10.1016/j.actamat.2004.08.031

Google Scholar

[74] Mishra, A.; Prasad, T. Residual Stresses Due to a Moving Heat Source. International Journal of Mechanical Sciences, 1985, 27(9): 571-581.

DOI: 10.1016/0020-7403(85)90073-6

Google Scholar

[75] Ee, K.C.; Dillon Jr. O.W.; Jawahir, I.S. Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. International Journal of Mechanical Sciences, 2005, 47(10): 1611–1628.

DOI: 10.1016/j.ijmecsci.2005.06.001

Google Scholar

[76] El-Sonbaty, I.A.; Khashaba, U.A.; Selmy, A.I.; Ali, A.I. Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach. Journal of Materials Processing Technology, 2008, 200(1-3): Pages 271–278.

DOI: 10.1016/j.jmatprotec.2007.09.006

Google Scholar

[77] Oktem, H.; Erzurumlu, T.; Erzincanli, F. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Materials & Design, 2006, 27(9): 735–744.

DOI: 10.1016/j.matdes.2005.01.010

Google Scholar

[78] Umbrello, D.; Ambrogio, G.; Filice, L.; Shivpuri, R. An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning. Journal of Materials Processing Technology, 2007, 189(1-3): 143–152.

DOI: 10.1016/j.jmatprotec.2007.01.016

Google Scholar

[79] Ali, Y.M.; Zhang, L.C. Estimation of residual stresses induced by grinding using a fuzzy logic approach. Journal of Materials Processing Technology, 1997, 63(1-3): 875–880.

DOI: 10.1016/s0924-0136(96)02742-2

Google Scholar

[80] Dweiri, F.; Al-Jarrah, M.; Al-Wedyan, H. Fuzzy surface roughness modeling of CNC down milling of Alumic-79. Journal of Materials Processing Technology, 2003, 133(3): 266–275.

DOI: 10.1016/s0924-0136(02)00847-6

Google Scholar

[81] Segawa, T.; Sasahara, H.; Tsutsumi, M. Development of a new tool to generate compressive residual stress within a machined surface. International Journal of Machine Tools and Manufacture, 2004, 44(11): 1215–1221.

DOI: 10.1016/j.ijmachtools.2004.03.010

Google Scholar