[1]
Davim, J.; Surface Integrity in Machining. Springer London Dordrecht Heidelberg New York, (2010).
Google Scholar
[2]
Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 2011, 51 (3): 250–280.
DOI: 10.1016/j.ijmachtools.2010.11.003
Google Scholar
[3]
Suraratchai, M. ;Limido, J.; Mabru, C.; Chieragatti, R. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. International Journal of Fatigue, 2008, 30 (12): 2119–2126.
DOI: 10.1016/j.ijfatigue.2008.06.003
Google Scholar
[4]
Ryu, J.J.; Shrotriya, P. Influence of roughness on surface instability of medical grade cobalt-chromium alloy (CoCrMo) during contact corrosion-fatigue. Applied Surface Science, 2013, 273 (15): 536–541.
DOI: 10.1016/j.apsusc.2013.02.076
Google Scholar
[5]
Boothroyd, G. Fundamentals of Metal Machining and Machine Tools. Scripta Book Company: Washington. DC, the United States, (1975).
Google Scholar
[6]
Fladischer, K.; Litwin, D.; Galas, J.; Weeks, A.E.; MacLaren, D.A.; Lammegger, R.; Sormann, H.; Ernst, W.E.; Holst, B. An optical profilometer for characterizing complex surfaces under high vacuum conditions. Precision Engineering, 2008, 32(3): 182–185.
DOI: 10.1016/j.precisioneng.2007.08.001
Google Scholar
[7]
Lee, D. -H. 3-Dimensional profile distortion measured by stylus type surface profilometer. Measurement, 2013, 46(1): 803–814.
DOI: 10.1016/j.measurement.2012.09.022
Google Scholar
[8]
Sugawara, H.; Yanagihara, M.; Asaoka, S.; Okusawa, M.; Maezawa, H. Development and performance of a profilometer for measurement of mirror surface figure. Journal of Electron Spectroscopy and Related Phenomena, 1996, 80: 485–488.
DOI: 10.1016/0368-2048(96)03022-8
Google Scholar
[9]
Wennerberg, A.; Ohlsson, R.; Rosén, B. -G.; Andersson, B. Characterizing three-dimensional topography of engineering and biomaterial surfaces by confocal laser scanning and stylus techniques. Medical Engineering & Physics, 1996, 18(7): 548–556.
DOI: 10.1016/1350-4533(95)00005-4
Google Scholar
[10]
Yilbas, Z.; Hasmi, M.S.J. Surface roughness measurement using an optical system. Journal of Materials Processing Technology, 1999, 88(1–3, 15): 10–22.
DOI: 10.1016/s0924-0136(98)00356-2
Google Scholar
[11]
Kuo, C. -C.; Chao, C. -H. Rapid optical measurement of surface roughness of polycrystalline thin films. Optics and Lasers in Engineering, 2010, 48(12): 1166–1169.
DOI: 10.1016/j.optlaseng.2010.07.007
Google Scholar
[12]
Yilbas, Z.; Hashmi, M.S.J. An optical method and neural network for surface roughness measurement. Optics and Lasers in Engineering, 1997, 28(6): 395–409.
DOI: 10.1016/s0143-8166(97)00066-3
Google Scholar
[13]
Bjuggren, M.; Krummenacher, L.; Mattsson, L. Noncontact surface roughness measurement of engineering surfaces by total integrated infrared scattering. Precision Engineering, 1997, 20(1): 33–45.
DOI: 10.1016/s0141-6359(97)00001-9
Google Scholar
[14]
Tsong, R.M.; Schmid, M.; Nagl, C.; Varga, P.; Davis, R.F.; Tsong, I.S.T. Scanning tunneling microscopy studies of niobium carbide (100) and (110) surfaces. Surface Science, 1996, 366(1): 85–92.
DOI: 10.1016/0039-6028(96)00804-7
Google Scholar
[15]
Semaltianos, N.G.; Wilson, E.G. Investigation of the surface morphology of thermally evaporated thin gold films on mica, glass, silicon and calcium fluoride substrates by scanning tunneling microscopy. Thin Solid Films, 2000, 366(1-2): 111–116.
DOI: 10.1016/s0040-6090(00)00710-0
Google Scholar
[16]
Song, Z.; Pascual, J.I.; Conrad, H.; Horn, K.; Rust, H. -P. Surface states of d character imaged by scanning tunneling microscopy. Surface Science, 2001, 491(1-2): 39–47.
DOI: 10.1016/s0039-6028(01)01434-0
Google Scholar
[17]
Nanda, K.K.; Sarangi, S.N.; Sahu, S.N. Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films. Applied Surface Science, 1998, 133(4): 293–297.
DOI: 10.1016/s0169-4332(98)00212-8
Google Scholar
[18]
Carneiro, K.; Jensen, C.P.; Jørgensen, J.F.; Garnœs, J.; McKeown, P.A. Roughness Parameters of Surfaces by Atomic Force Microscopy. CIRP Annals - Manufacturing Technology, 1995, 44(1): 517–522.
DOI: 10.1016/s0007-8506(07)62376-2
Google Scholar
[19]
Rönnow, D.; Lindström, T.; Isidorsson, J.; Ribbing, C. -G. Surface roughness of oxidised copper films studied by atomic force microscopy and spectroscopic light scattering. Thin Solid Films, 1998, 325(1-2): 92–98.
DOI: 10.1016/s0040-6090(98)00503-3
Google Scholar
[20]
Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Materials & Design, 2012, 35: 572-588.
DOI: 10.1016/j.matdes.2011.08.022
Google Scholar
[21]
Chen, L.Y.; Wang, G.Z.; Tan, J.P.; Xuan, F.Z.; Tu, S.T. Effects of residual stress on creep damage and crack initiation in notched CT specimens of a Cr-Mo-V steel. Engineering Fracture Mechanics, 2013, 97: 80-91.
DOI: 10.1016/j.engfracmech.2012.10.020
Google Scholar
[22]
Lammi, C.J.; Lados, D.A. Effects of residual stresses on fatigue crack growth behavior of structural materials: Analytical corrections. International Journal of Fatigue, 2011, 33(7): 858-867.
DOI: 10.1016/j.ijfatigue.2011.01.019
Google Scholar
[23]
Ren, X.D.; Zhan, Q.B.; Yang, H.M.; Dai, F.Z.; Cui, C.Y.; Sun, G.F.; Ruan, L. The effects of residual stress on fatigue behavior and crack propagation from laser shock processing-worked hole. Materials & Design, 2013, 44: 149-154.
DOI: 10.1016/j.matdes.2012.07.024
Google Scholar
[24]
Wang, L.; Bei, H.; Gao, Y.F.; Lu, Z.P.; Nieh, T.G. Effect of residual stresses on the hardness of bulk metallic glasses. Acta Materialia, 2011, 59(7): 2858-2864.
DOI: 10.1016/j.actamat.2011.01.025
Google Scholar
[25]
Viotti, M.R.; Dolinko, A.E.; Galizzi, G.E.; Kaufmann, G.H. A portable digital speckle pattern interferometry device to measure residual stresses using the hole drilling technique. Optics and Lasers in Engineering, 2006, 44(10): 1052-1066.
DOI: 10.1016/j.optlaseng.2005.09.004
Google Scholar
[26]
Sicot, O.; Gong, X.L.; Cherouat, A.; Lu, J. Influence of experimental parameters on determination of residual stress using the incremental hole-drilling method. Composites Science and Technology, 2004, 64(2): 171-180.
DOI: 10.1016/s0266-3538(03)00278-1
Google Scholar
[27]
Olabi, A.G.; Benyounis, K.Y.; Hashmi, M.S.J. Application of Response Surface Methodology in Describing the Residual Stress Distribution in CO2 Laser Welding of AISI304. Strain, 2007, 43 (1): 37-46.
DOI: 10.1111/j.1475-1305.2007.00305.x
Google Scholar
[28]
Mainjot, A.K.; Schajer, G.S.; Vanheusden, A.J.; Sadoun, M.J. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: Measurement by hole-drilling. Dental Materials, 2012, 28(4): 378-384.
DOI: 10.1016/j.dental.2011.11.009
Google Scholar
[29]
Mainjot, A.K.; Schajer, G.S.; Vanheusden, A.J.; Sadoun, M.J. Residual stress measurement in veneering ceramic by hole-drilling. Dental Materials, 2011, 27(5): 439–444.
DOI: 10.1016/j.dental.2010.12.002
Google Scholar
[30]
Olabi, A.G.; Hashmi, M.S.J. Stress relief procedures for low carbon steel (1020) welded components. Journal of Materials Processing Technology, 1996, 56(1-4): 552–562.
DOI: 10.1016/0924-0136(95)01869-7
Google Scholar
[31]
Rickert, T.; Fix, R.; Suominen, L. Comparison of Residual Stress Measurements Using X-Ray Diffraction and PRISM-Electronic Speckle Pattern Interferometry and Hole-Drilling. SAE Technical Paper, 2007, doi: 10. 4271/2007-01-0804.
DOI: 10.4271/2007-01-0804
Google Scholar
[32]
Oladijo, O.P.; Venter, A.M.; Cornish, L.A.; Sacks, N. X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates. Surface and Coatings Technology, 2012, 206(23): 4725–4729.
DOI: 10.1016/j.surfcoat.2012.01.044
Google Scholar
[33]
Chen, S. -L.; Shen, B.; Zhang, J. -G.; Wang, L.; Sun, F. -H. Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 3021–3026.
DOI: 10.1016/s1003-6326(11)61565-3
Google Scholar
[34]
Mahmoodi, M.; Sedighi, M.; Tanner, D.A. Investigation of through thickness residual stress distribution in equal channel angular rolled Al 5083 alloy by layer removal technique and X-ray diffraction. Materials & Design, 2012, 40: 516–520.
DOI: 10.1016/j.matdes.2012.03.029
Google Scholar
[35]
Polatidis, E.; Frankel, P.; Wei, J.; Klaus, M.; Comstock, R.J.; Ambard, A.; Lyon, S.; Cottis, R.A.; Preuss, M. Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. Journal of Nuclear Materials, 2013, 432(1-3): 102–112.
DOI: 10.1016/j.jnucmat.2012.07.025
Google Scholar
[36]
Kirchlechner, C.; Martinschitz, K.J.; Daniel, R.; Klaus, M.; Genzel, C.; Mitterer, C.; Keckes, J. Residual stresses and thermal fatigue in CrN hard coatings characterized by high-temperature synchrotron X-ray diffraction. Thin Solid Films, 2010, 518(8): 2090–(2096).
DOI: 10.1016/j.tsf.2009.08.011
Google Scholar
[37]
Sharman, A.R.C.; Hughes, J.J.; Ridgway, K. Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Machining Science and Technology: An International Journal, 2004, 8(3): 399-414.
DOI: 10.1081/mst-200039865
Google Scholar
[38]
Sun, J.; Guo Y.B. A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. Journal of Materials Processing Technology, 2009, 209(8): 4036–4042.
DOI: 10.1016/j.jmatprotec.2008.09.022
Google Scholar
[39]
Pawade, R.S.; Joshi, S.S.; Brahmankar, P.K. Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. International Journal of Machine Tools and Manufacture, 2008, 48(1): 15–28.
DOI: 10.1016/j.ijmachtools.2007.08.004
Google Scholar
[40]
Sharman, A.R.C.; Hughes, J.I.; Ridgway, K. An analysis of the residual stresses generated in Inconel 718™ when turning. Journal of Materials Processing Technology, 2006, 173(3): 359–367.
DOI: 10.1016/j.jmatprotec.2005.12.007
Google Scholar
[41]
Capello, E. (2005) Residual stresses in turning: Part I: Influence of process parameters. Journal of Materials Processing Technology, 160(2): 221–228.
DOI: 10.1016/j.jmatprotec.2004.06.012
Google Scholar
[42]
Sharman, A.R.C.; Hughes, J.I.; Ridgway, K. An analysis of the residual stresses generated in Inconel 718 when turning. Journal of Materials Processing Technology, 2006, 173(3): 359–367.
DOI: 10.1016/j.jmatprotec.2005.12.007
Google Scholar
[43]
Sridhar, B.R.; Devananda, G.; Ramachandra, K.; Bhat, R. Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. Journal of Materials Processing Technology, 2003, 138(1-3): 628–634.
DOI: 10.1016/s0924-0136(03)00612-5
Google Scholar
[44]
Sadat, A.B.; Reddy, M.Y.; Wang, B.P. Plastic deformation analysis in machining of Inconel 718 nickel base superalloy using both experimental and numerical methods. International Journal of Mechanical Sciences, 1991, 33(10): 829–842.
DOI: 10.1016/0020-7403(91)90005-n
Google Scholar
[45]
Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(9): 879–887.
DOI: 10.1016/j.ijmachtools.2004.02.016
Google Scholar
[46]
Pawade, R.S.; Joshi, S.S.; Brahmankar, P.K.; Rahman, M. An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. Journal of Materials Processing Technology, 2007, 192–193: 139–146.
DOI: 10.1016/j.jmatprotec.2007.04.049
Google Scholar
[47]
Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(9): 879–887.
DOI: 10.1016/j.ijmachtools.2004.02.016
Google Scholar
[48]
Matsumoto, Y.; Hashimoto, F.; Lahoti, G. Surface Integrity Generated by Precision Hard Turning. CIRP Annals - Manufacturing Technology, 1999, 48(1): 59–62.
DOI: 10.1016/s0007-8506(07)63131-x
Google Scholar
[49]
Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture, 2004, 44(14): 1481–1491.
DOI: 10.1016/j.ijmachtools.2004.05.005
Google Scholar
[50]
Dahlman, P.; Gunnberg, F.; Jacobson, M. The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. Journal of Materials Processing Technology, 2004, 147(2): 181–184.
DOI: 10.1016/j.jmatprotec.2003.12.014
Google Scholar
[51]
Li, B. A review of tool wears estimation using theoretical analysis and numerical simulation technologies. International Journal of Refractory Metals and Hard Materials, 2012, 35: 143–151.
DOI: 10.1016/j.ijrmhm.2012.05.006
Google Scholar
[52]
Che-Haron, C.H. Tool life and surface integrity in turning titanium alloy. Journal of Materials Processing Technology, 2001, 118(1-3): 231–237.
DOI: 10.1016/s0924-0136(01)00926-8
Google Scholar
[53]
Sharman, A.R.C.; Hughes, J.I.; Ridgway, K. Surface integrity and tool life when turning Inconel 718 using ultra-high pressure and flood coolant systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008, 222(6): 653–664.
DOI: 10.1243/09544054jem936
Google Scholar
[54]
Aspinwall, D.K.; Dewes, R.C.; Ng, E. -G.; Sage, C.; Soo, S.L. The influence of cutter orientation and workpiece angle on machinability when high-speed milling Inconel 718 under finishing conditions. International Journal of Machine Tools and Manufacture, 2007, 47(12-13): 1839–1846.
DOI: 10.1016/j.ijmachtools.2007.04.007
Google Scholar
[55]
Chen, L.; El-Wardany, T.I.; Harris, W.C. Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses. CIRP Annals - Manufacturing Technology, 2004, 53(1): 95–98.
DOI: 10.1016/s0007-8506(07)60653-2
Google Scholar
[56]
Thiele, J.D.; Melkote, S.N. Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. Journal of Materials Processing Technology, 1999, 94(2-3): 216–226.
DOI: 10.1016/s0924-0136(99)00111-9
Google Scholar
[57]
Hua,J.; Shivpuri,R.; Cheng X.M.; Bedekar,V.; Matsumoto,Y.; Hashimoto,F.; Watkins, T.R. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Materials Science and Engineering: A, 2005, 394(1-2): 238–248.
DOI: 10.1016/j.msea.2004.11.011
Google Scholar
[58]
Aguiar, M.M.D.; Diniz, A.E.; Pederiva,R. Correlating surface roughness, tool wear and tool vibration in the milling process of hardened steel using long slender tools. International Journal of Machine Tools and Manufacture, 2013, 68: 1–10.
DOI: 10.1016/j.ijmachtools.2013.01.002
Google Scholar
[59]
Lin, S.C.; Chang, M.F. Studies on the effects of vibrations on the surface finish using a surface topography simulation model for turning. International Journal of Machine Tools and Manufacture, 1998, 38(7): 763–782.
DOI: 10.1016/s0890-6955(97)00073-4
Google Scholar
[60]
Jiang, H.; Long, X.H.; Meng, G. Study of the correlation between surface generation and cutting vibrations in peripheral milling. Journal of Materials Processing Technology, 2008, 208(1-3): 229–238.
DOI: 10.1016/j.jmatprotec.2007.12.127
Google Scholar
[61]
Brehl, D.E.; Dow, T.A. Review of vibration-assisted machining. Precision Engineering, 2008, 32(3): 153–172.
DOI: 10.1016/j.precisioneng.2007.08.003
Google Scholar
[62]
Babitsky, V.I.; Kalashnikov, A.N.; Meadows, A.; Wijesundara, A.A.H.P. ultrasonically assisted turning of aviation materials. Journal of Materials Processing Technology, 2003, 132(1-3): 157–167.
DOI: 10.1016/s0924-0136(02)00844-0
Google Scholar
[63]
Azouzi, R.; Guillot, M. On-line Prediction of Surface Finish and Dimensional Deviation in Turning Using Neural Network Based Sensor Fusion. International Journal of Machine Tools and Manufacture, 1997, 37 (9): 1201–1217.
DOI: 10.1016/s0890-6955(97)00013-8
Google Scholar
[64]
Huang, B.; Chen, J.C. An In-process Neural Network-based Surface Roughness Prediction System Using a Dynamometer in End Milling Operations. International Journal of Advanced Manufacturing Technology, 2003, 21 (5): 339–347.
DOI: 10.1007/s001700300039
Google Scholar
[65]
Guo, Y.B.; Ammula, S.C. Real-time acoustic emission monitoring for surface damage in hard machining. International Journal of Machine Tools and Manufacture, 2005, 45(14): 1622–1627.
DOI: 10.1016/j.ijmachtools.2005.02.007
Google Scholar
[66]
Axinte, D.A.; Dewes, R.C. Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. Journal of Materials Processing Technology, 2002, 127(3): 325–335.
DOI: 10.1016/s0924-0136(02)00282-0
Google Scholar
[67]
Tsuchida, K.; Kawada, Y.; Kodama, S. A Study on the Residual Stress Distributions by Turning. Bulletin of JSME, 1975, 116(18): 123-130.
DOI: 10.1299/jsme1958.18.123
Google Scholar
[68]
Fuh, K. -H.; Wu, C. -F. A Residual-Stress Model for the Milling of Aluminum Alloy (2014-T6). Journal of Materials Processing Technology, 1995, 51(1-4): 87-105.
DOI: 10.1016/0924-0136(94)01355-5
Google Scholar
[69]
El-Axir, M.H. A method of modeling residual stress distribution in turning for different materials. International Journal of Machine Tools and Manufacture, 2002, 42(9): 1055–1063.
DOI: 10.1016/s0890-6955(02)00031-7
Google Scholar
[70]
Kwon, Y.; Ertekin, Y.; Tseng, T. Characterization of tool wear measurement with relation to the surface roughness in turning. Machining Science and Technology: An International Journal, 2004, 8 (1): 39–51.
DOI: 10.1081/mst-120034239
Google Scholar
[71]
El-Wahab, A.I.; Kishawy, H.A. A new method to improve the surface quality during CNC machining. International Journal of Production Research, 2000, 38(16): 3711–3723.
DOI: 10.1080/00207540050175969
Google Scholar
[72]
Ulutan, D.; Alaca, B.E.; Lazoglu, I. Analytical modeling of residual stresses in machining. Journal of Materials Processing Technology, 2007, 183: 77–87.
DOI: 10.1016/j.jmatprotec.2006.09.032
Google Scholar
[73]
Dai, K.; Villegas, J.; Stone, Z.; Shaw, L. Finite element modelling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process. Acta Materialia, 2004, 52(20): 5771–5782.
DOI: 10.1016/j.actamat.2004.08.031
Google Scholar
[74]
Mishra, A.; Prasad, T. Residual Stresses Due to a Moving Heat Source. International Journal of Mechanical Sciences, 1985, 27(9): 571-581.
DOI: 10.1016/0020-7403(85)90073-6
Google Scholar
[75]
Ee, K.C.; Dillon Jr. O.W.; Jawahir, I.S. Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. International Journal of Mechanical Sciences, 2005, 47(10): 1611–1628.
DOI: 10.1016/j.ijmecsci.2005.06.001
Google Scholar
[76]
El-Sonbaty, I.A.; Khashaba, U.A.; Selmy, A.I.; Ali, A.I. Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach. Journal of Materials Processing Technology, 2008, 200(1-3): Pages 271–278.
DOI: 10.1016/j.jmatprotec.2007.09.006
Google Scholar
[77]
Oktem, H.; Erzurumlu, T.; Erzincanli, F. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Materials & Design, 2006, 27(9): 735–744.
DOI: 10.1016/j.matdes.2005.01.010
Google Scholar
[78]
Umbrello, D.; Ambrogio, G.; Filice, L.; Shivpuri, R. An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning. Journal of Materials Processing Technology, 2007, 189(1-3): 143–152.
DOI: 10.1016/j.jmatprotec.2007.01.016
Google Scholar
[79]
Ali, Y.M.; Zhang, L.C. Estimation of residual stresses induced by grinding using a fuzzy logic approach. Journal of Materials Processing Technology, 1997, 63(1-3): 875–880.
DOI: 10.1016/s0924-0136(96)02742-2
Google Scholar
[80]
Dweiri, F.; Al-Jarrah, M.; Al-Wedyan, H. Fuzzy surface roughness modeling of CNC down milling of Alumic-79. Journal of Materials Processing Technology, 2003, 133(3): 266–275.
DOI: 10.1016/s0924-0136(02)00847-6
Google Scholar
[81]
Segawa, T.; Sasahara, H.; Tsutsumi, M. Development of a new tool to generate compressive residual stress within a machined surface. International Journal of Machine Tools and Manufacture, 2004, 44(11): 1215–1221.
DOI: 10.1016/j.ijmachtools.2004.03.010
Google Scholar