[1]
Jurišica, F. Duchoň, J. Tóth, Programming of mobile robot with RoboRealm, AT&P Journal Plus, (2011).
Google Scholar
[2]
Ľ. Miková, M. Čurilla, Possibility of the kinematics arrangement of a mobile mechatronic system, American Journal of Mechanical Engineering. Vol. 1, no. 7, pp.390-393, (2013).
Google Scholar
[3]
B. Siciliano, Bruno, O. Khatib, Handbook of robotics. Springer, ISBN 978-3-540-30301-5, (2008).
Google Scholar
[4]
R. W. Brockett, Asymptotic Stability and Feedback Stabilization. R.S. Millmann (eds. ), Differential Geometric Control Theory, Birkhauser, Boston, 392 MA, (1983).
Google Scholar
[5]
Ľ. Miková, F. Trebuňa, M. Čurilla, Model of mechatronic system's undercarriage created on the basis of its dynamics, In: Process Control (PC), International Conference : Štrbské Pleso, Slovakia, IEEE, (2013).
DOI: 10.1109/pc.2013.6581414
Google Scholar
[6]
Ľ. Miková, F. Trebuňa, M. Kelemen, Concept of locomotion mobile undercarriage structure control for the path tracking, Solid State Phenomena, Vol. 198, (2013).
DOI: 10.4028/www.scientific.net/ssp.198.79
Google Scholar
[7]
Y. Kanayama, F. Kimura, T. Miyazaki, A stable tracking control method for a nonholonomic mobile robot. IEEE Transaction on Robotics and Automation, (1991).
DOI: 10.1109/robot.1990.126006
Google Scholar
[8]
Y. Nakamura, H. Ezaki, Y. Tan, W. Chung, Design of steering mechanism and control of nonholonomic trailer systems, IEEE Trans. Robot. Automat. 17(3), (2001).
DOI: 10.1109/70.938393
Google Scholar
[9]
R. Siegwart, I. Nourbakhsh, Introduction to autonomous mobile robots, Massachussetts institute of technology, (2004).
Google Scholar
[10]
Ľ. Bartoš, Vybrané problémy kinematiky štandardných kolesových podvozkov mobilných robotov. AT&P journal 2/(2008).
Google Scholar
[11]
D. Harachová, S. Medvecká-Beňová, The drive systems of mechanotherapeutic devices, Quaere 2013: interdisciplinární konference doktorandů a odborných asistentů vol. 3 Magnanimitas, (2013).
DOI: 10.33543/q2022.12
Google Scholar
[12]
Ľ. Miková, F. Trebuňa, The application of simulation methods for modeling mechatronic systems, Acta Mechanica Slovaca. Vol. 16, (2012).
DOI: 10.21496/ams.2012.015
Google Scholar
[13]
A. Gmiterko, M. Kelemen, T. Kelemenová, Ľ. Miková, Adaptable mechatronic locomotion system, Acta Mechanica Slovaca. Vol. 14, (2010).
DOI: 10.2478/v10147-011-0040-x
Google Scholar
[14]
M. Kelemen, D. J. Colville, T. Kelemenová, I. Virgala, Ľ. Miková, A concept of the differentially driven three wheeled robot, International Journal of Applied Mechanics and Engineering. Vol. 18, no. 3, , pp.687-698, (2013).
DOI: 10.2478/ijame-2013-0042
Google Scholar
[15]
P. Božek, Automated Detection Type Body and Shape Deformation for Robotic Welding Line. In: Advances in Intelligent Systems and Computing. - ISSN 2194-5357. – pp.229-240.
DOI: 10.1007/978-3-319-01857-7_22
Google Scholar
[16]
S. Saniuk, A. Saniuk, Rapid prototyping of constraint-based production flows in outsourcing, Advanced Materials Research, Vol. 44-46, 2008, pp.355-360.
DOI: 10.4028/www.scientific.net/amr.44-46.355
Google Scholar
[17]
K. Bielefeldt, W. Papacz, J. Walkowiak, Ekologiczny samochód, Tworzywa sztuczne w technice motoryzacyjnej. Cz. 1. (2011).
Google Scholar
[18]
K. Bielefeldt, W. Papacz, J. Walkowiak. Ekologiczny samochód, Wzmocnione tworzywa sztuczne w technice motoryzacyjnej. Rozważania konstrukcyjne. Cz. 2. (2011).
Google Scholar
[19]
F. Trebuňa, F. Šimčák, P. Trebuňa, Z. Bobovský, M. Pástor, P. Šarga, F. Frankovský, M. Hagara, Methodology for experimental verification of safety of packages for transport of spent nuclear fuel, in: Acta Mechanica Slovaca (2012).
DOI: 10.21496/ams.2012.028
Google Scholar