Kinematic Model of Nonholonomic Mobile Robots

Article Preview

Abstract:

Provided in this article is a general overview of modeling nonholonomic mobile robots. Emphasis is given to the structural characteristics of kinematic models, taking into account the mobility restrictions caused by various links. Based on the degree of mobility and the degree of controllability it is possible to divide wheeled mobile robots into multiple groups, regardless of the robot construction and the wheels arrangement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-114

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jurišica, F. Duchoň, J. Tóth, Programming of mobile robot with RoboRealm, AT&P Journal Plus, (2011).

Google Scholar

[2] Ľ. Miková, M. Čurilla, Possibility of the kinematics arrangement of a mobile mechatronic system, American Journal of Mechanical Engineering. Vol. 1, no. 7, pp.390-393, (2013).

Google Scholar

[3] B. Siciliano, Bruno, O. Khatib, Handbook of robotics. Springer, ISBN 978-3-540-30301-5, (2008).

Google Scholar

[4] R. W. Brockett, Asymptotic Stability and Feedback Stabilization. R.S. Millmann (eds. ), Differential Geometric Control Theory, Birkhauser, Boston, 392 MA, (1983).

Google Scholar

[5] Ľ. Miková, F. Trebuňa, M. Čurilla, Model of mechatronic system's undercarriage created on the basis of its dynamics, In: Process Control (PC), International Conference : Štrbské Pleso, Slovakia, IEEE, (2013).

DOI: 10.1109/pc.2013.6581414

Google Scholar

[6] Ľ. Miková, F. Trebuňa, M. Kelemen, Concept of locomotion mobile undercarriage structure control for the path tracking, Solid State Phenomena, Vol. 198, (2013).

DOI: 10.4028/www.scientific.net/ssp.198.79

Google Scholar

[7] Y. Kanayama, F. Kimura, T. Miyazaki, A stable tracking control method for a nonholonomic mobile robot. IEEE Transaction on Robotics and Automation, (1991).

DOI: 10.1109/robot.1990.126006

Google Scholar

[8] Y. Nakamura, H. Ezaki, Y. Tan, W. Chung, Design of steering mechanism and control of nonholonomic trailer systems, IEEE Trans. Robot. Automat. 17(3), (2001).

DOI: 10.1109/70.938393

Google Scholar

[9] R. Siegwart, I. Nourbakhsh, Introduction to autonomous mobile robots, Massachussetts institute of technology, (2004).

Google Scholar

[10] Ľ. Bartoš, Vybrané problémy kinematiky štandardných kolesových podvozkov mobilných robotov. AT&P journal 2/(2008).

Google Scholar

[11] D. Harachová, S. Medvecká-Beňová, The drive systems of mechanotherapeutic devices, Quaere 2013: interdisciplinární konference doktorandů a odborných asistentů vol. 3 Magnanimitas, (2013).

DOI: 10.33543/q2022.12

Google Scholar

[12] Ľ. Miková, F. Trebuňa, The application of simulation methods for modeling mechatronic systems, Acta Mechanica Slovaca. Vol. 16, (2012).

DOI: 10.21496/ams.2012.015

Google Scholar

[13] A. Gmiterko, M. Kelemen, T. Kelemenová, Ľ. Miková, Adaptable mechatronic locomotion system, Acta Mechanica Slovaca. Vol. 14, (2010).

DOI: 10.2478/v10147-011-0040-x

Google Scholar

[14] M. Kelemen, D. J. Colville, T. Kelemenová, I. Virgala, Ľ. Miková, A concept of the differentially driven three wheeled robot, International Journal of Applied Mechanics and Engineering. Vol. 18, no. 3, , pp.687-698, (2013).

DOI: 10.2478/ijame-2013-0042

Google Scholar

[15] P. Božek, Automated Detection Type Body and Shape Deformation for Robotic Welding Line. In: Advances in Intelligent Systems and Computing. - ISSN 2194-5357. – pp.229-240.

DOI: 10.1007/978-3-319-01857-7_22

Google Scholar

[16] S. Saniuk, A. Saniuk, Rapid prototyping of constraint-based production flows in outsourcing, Advanced Materials Research, Vol. 44-46, 2008, pp.355-360.

DOI: 10.4028/www.scientific.net/amr.44-46.355

Google Scholar

[17] K. Bielefeldt, W. Papacz, J. Walkowiak, Ekologiczny samochód, Tworzywa sztuczne w technice motoryzacyjnej. Cz. 1. (2011).

Google Scholar

[18] K. Bielefeldt, W. Papacz, J. Walkowiak. Ekologiczny samochód, Wzmocnione tworzywa sztuczne w technice motoryzacyjnej. Rozważania konstrukcyjne. Cz. 2. (2011).

Google Scholar

[19] F. Trebuňa, F. Šimčák, P. Trebuňa, Z. Bobovský, M. Pástor, P. Šarga, F. Frankovský, M. Hagara, Methodology for experimental verification of safety of packages for transport of spent nuclear fuel, in: Acta Mechanica Slovaca (2012).

DOI: 10.21496/ams.2012.028

Google Scholar