[1]
P. Ambrosio, F. Ripamonti, F. Resta, F. Braghin, A sensor and actuator placement technique for active vibration control using H2 norm. IEEE International Conference on Mechatronics, ICM 2013, (2013 120-125.
DOI: 10.1109/icmech.2013.6518522
Google Scholar
[2]
A. Arbel, Controllability measures and actuator placement in oscillatory systems. International Journal of Control, vol. 33, no. 3, (1981) 565-574.
DOI: 10.1080/00207178108922941
Google Scholar
[3]
A. Armaou, M. A. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial H2 norm. Chemical Engineering Science, vol. 61, (2006) 7351-7367.
DOI: 10.1016/j.ces.2006.07.027
Google Scholar
[4]
M. A. Demetriou, A. Armaou, Optimal actuator placement and model reduction for a class of parabolic partial differential equations using spatial H2 norms. Proc. of the 2005 American Control Conference, Portland, (2005) 2124–2128.
DOI: 10.1109/acc.2005.1470716
Google Scholar
[5]
I. Bruant, L. Gallimard, S. Nikoukar, Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm. Mechanics of Advanced Materials and Structures, vol. 18, no. 7, (2010) 469-475.
DOI: 10.1016/j.jsv.2009.12.001
Google Scholar
[6]
L. Costa, I. Figueiredo, R. Leal, P. Oliveira, G. Stadler, Modeling and numerical study of actuator and sensor effects for a laminated piezoelectric plate. Computers & Structures, vol. 85, no. 7-8, (2007) 385-403.
DOI: 10.1016/j.compstruc.2006.11.011
Google Scholar
[7]
E. F. Crawley, J. Luis, Use of piezoelectric actuators as elements of inteligent structures. AIAA journal, vol. 4, (1987) 1373-1378.
Google Scholar
[8]
M. A. Demetriou, A numerical algorithm for the optimal placement of actuators and sensors for flexible structures. Proc. of the American Control Conference, Chicago, (2000) 2290-2294.
DOI: 10.1109/acc.2000.878588
Google Scholar
[9]
F. Fahroo, Y. Wang, Optimal location of piezoceramic actuators for vibration suppression of a flexible structure. Proc. of the 36th IEEE Conf. On Decision and Control, San Diego, (1997) 1966-(1973).
DOI: 10.1109/cdc.1997.657888
Google Scholar
[10]
W. K. Gawronski, Actuator and sensor placement for structural testing and control. Jour. of Sound and Vibrations, vol. 208, no 1, (1997) 101-110.
Google Scholar
[11]
W. K. Gawronski, Advanced Structural Dynamics and Active Control of Structures. Springer-Verlag, (2004).
Google Scholar
[12]
V. Gupta, M. Sharma, N. Thakur, Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review. Journal of Intelligent Material Systems and Structures, vol. 21, no. 12, (2010).
DOI: 10.1177/1045389x10381659
Google Scholar
[13]
J. Sladek, V. Sladek, P. Solek, S.N. Atluri: Modeling of intelligent material systems by the MLPG, CMES - Computer Modeling in Engineering & Sciences , vol. 34, No. 3, (2008) 273-300.
Google Scholar
[14]
L. Starek, P. Šolek, D. Starek, A. Starekova, P. Blesak, Suppression of vibration of a clamped beam via peizoceramics. Mechanics, Warsaw, vol. 26, No. 4, (2007) 187-194.
Google Scholar
[15]
P. Šolek, L. Starek, G. Hulko,C. Belavý, Š. Cibiri, Theoretical and Experimental Study of Efficient Suppression Vibrations in a Clamped Square Plate. Mechatronics, robotics and biomechanics 2005, Třešť, (2005) 277-285.
Google Scholar
[16]
P. Šolek, M. Horínek, Optimal actuator/sensor placement for flexible structures. In: Acta Mechanica Slovaca. - Roč. 12, č. 3-B, (2008) 755-764.
Google Scholar
[17]
P. Šolek, M. Horínek, Actuator/sensor placement for two-dimensional flexible systems. In: Metalurgija. Metallurgy, vol. 49, no. 2, (2010) 550-554.
Google Scholar
[18]
P. Šolek, M. Horínek, An Active Control of the Two Dimensional Mechanical Systems in Resonance. In: Recent Advances in Mechatronics 2008-2009, Springer-Verlag, (2009). - ISB 173-178.
DOI: 10.1007/978-3-642-05022-0_30
Google Scholar