An Active Control of the Thin-Walled Mechanical Systems

Article Preview

Abstract:

This article deals with the influence of optimal actuator and sensor placement on the active control of thin-walled mechanical systems. The approach used for optimal actuator and sensor placement is based on the evaluation norms and. The optimal actuator and sensor placement satisfied the requirements on the controllability, observability and spillover prevention. The investigation of the optimal placement of actuators and sensors is demonstrated on the active vibration of the thin-walled two dimensional mechanical systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-31

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Ambrosio, F. Ripamonti, F. Resta, F. Braghin, A sensor and actuator placement technique for active vibration control using H2 norm. IEEE International Conference on Mechatronics, ICM 2013, (2013 120-125.

DOI: 10.1109/icmech.2013.6518522

Google Scholar

[2] A. Arbel, Controllability measures and actuator placement in oscillatory systems. International Journal of Control, vol. 33, no. 3, (1981) 565-574.

DOI: 10.1080/00207178108922941

Google Scholar

[3] A. Armaou, M. A. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial H2 norm. Chemical Engineering Science, vol. 61, (2006) 7351-7367.

DOI: 10.1016/j.ces.2006.07.027

Google Scholar

[4] M. A. Demetriou, A. Armaou, Optimal actuator placement and model reduction for a class of parabolic partial differential equations using spatial H2 norms. Proc. of the 2005 American Control Conference, Portland, (2005) 2124–2128.

DOI: 10.1109/acc.2005.1470716

Google Scholar

[5] I. Bruant, L. Gallimard, S. Nikoukar, Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm. Mechanics of Advanced Materials and Structures, vol. 18, no. 7, (2010) 469-475.

DOI: 10.1016/j.jsv.2009.12.001

Google Scholar

[6] L. Costa, I. Figueiredo, R. Leal, P. Oliveira, G. Stadler, Modeling and numerical study of actuator and sensor effects for a laminated piezoelectric plate. Computers & Structures, vol. 85, no. 7-8, (2007) 385-403.

DOI: 10.1016/j.compstruc.2006.11.011

Google Scholar

[7] E. F. Crawley, J. Luis, Use of piezoelectric actuators as elements of inteligent structures. AIAA journal, vol. 4, (1987) 1373-1378.

Google Scholar

[8] M. A. Demetriou, A numerical algorithm for the optimal placement of actuators and sensors for flexible structures. Proc. of the American Control Conference, Chicago, (2000) 2290-2294.

DOI: 10.1109/acc.2000.878588

Google Scholar

[9] F. Fahroo, Y. Wang, Optimal location of piezoceramic actuators for vibration suppression of a flexible structure. Proc. of the 36th IEEE Conf. On Decision and Control, San Diego, (1997) 1966-(1973).

DOI: 10.1109/cdc.1997.657888

Google Scholar

[10] W. K. Gawronski, Actuator and sensor placement for structural testing and control. Jour. of Sound and Vibrations, vol. 208, no 1, (1997) 101-110.

Google Scholar

[11] W. K. Gawronski, Advanced Structural Dynamics and Active Control of Structures. Springer-Verlag, (2004).

Google Scholar

[12] V. Gupta, M. Sharma, N. Thakur, Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review. Journal of Intelligent Material Systems and Structures, vol. 21, no. 12, (2010).

DOI: 10.1177/1045389x10381659

Google Scholar

[13] J. Sladek, V. Sladek, P. Solek, S.N. Atluri: Modeling of intelligent material systems by the MLPG, CMES - Computer Modeling in Engineering & Sciences , vol. 34, No. 3, (2008) 273-300.

Google Scholar

[14] L. Starek, P. Šolek, D. Starek, A. Starekova, P. Blesak, Suppression of vibration of a clamped beam via peizoceramics. Mechanics, Warsaw, vol. 26, No. 4, (2007) 187-194.

Google Scholar

[15] P. Šolek, L. Starek, G. Hulko,C. Belavý, Š. Cibiri, Theoretical and Experimental Study of Efficient Suppression Vibrations in a Clamped Square Plate. Mechatronics, robotics and biomechanics 2005, Třešť, (2005) 277-285.

Google Scholar

[16] P. Šolek, M. Horínek, Optimal actuator/sensor placement for flexible structures. In: Acta Mechanica Slovaca. - Roč. 12, č. 3-B, (2008) 755-764.

Google Scholar

[17] P. Šolek, M. Horínek, Actuator/sensor placement for two-dimensional flexible systems. In: Metalurgija. Metallurgy, vol. 49, no. 2, (2010) 550-554.

Google Scholar

[18] P. Šolek, M. Horínek, An Active Control of the Two Dimensional Mechanical Systems in Resonance. In: Recent Advances in Mechatronics 2008-2009, Springer-Verlag, (2009). - ISB 173-178.

DOI: 10.1007/978-3-642-05022-0_30

Google Scholar