Application of Karray-Bouc Hysteretic Model for Cumulative Damage Calculation Using Energy Fatigue Curve

Article Preview

Abstract:

The paper deals with the application of numerical computational tools for the hysteretic curve identification using Karray-Bouc and Ramberg-Osgood models. The Karray-Bouc model parameters will be determined from Ramberg-Osgood model and Manson-Coffin curve parameters. Using special MATLAB’s procedures we can calculate dissipative (hysteretic) energy density per cycle and express Manson-Coffin curve in energy version.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-39

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Balda: A New Method for Fatigue Life Estimation using the Stochastic Load. Computational Mechanics 2006, Vol. 1, Nečtiny, 2006, pp.57-62.

Google Scholar

[2] M. Balda, J. Svoboda: Energetic Criteria Application for the Construction Life Computation under the Multiaxial Stochastic Disproportional Load. Computational Mechanics 2003, Nečtiny, 2003, pp.23-28.

Google Scholar

[3] V. Dekýš, A. Sapietová, R. Kocúr: On the Reliability Estimation of the Conveyer Mechanism Using the Monte Carlo Method. Proc. COSIM 2006, Krynica-Zdroj, 2006, pp.67-74.

Google Scholar

[4] R.H. Cherng, Y.K. Wen: Stochastic Finite Element Analysis of Non-linear Plane Trusses. Int. J. Non-Linear Mechanics, Vol. 26, No. 6, 1991, pp.835-849.

DOI: 10.1016/0020-7462(91)90035-r

Google Scholar

[5] M. Kenderová, F. Trebuňa, P. Frankovský: Verification of Stress Components Determined by Experimental Methods Using Airy Stress Function. Int. J. Procedia Engineering, Vol. 48, 2012, pp.295-303, ISSN 1877-7058.

DOI: 10.1016/j.proeng.2012.09.517

Google Scholar

[6] V. Kompiš, P. Novák, M. Handrik: Finite Displacements in Reciprocity-based FE Formulation. J. Computer Assisted Mechanics and Engineering Sciences, Vol. 9, No. 4, 2002, pp.469-480, ISSN 1232-308X.

Google Scholar

[7] E. Macha, C.M. Sonsino: Energy Criteria of Multiaxial Fatigue Failure. Fatigue Fract. Engng Mater. Struct., Vol. 22, 2000, pp.1053-1070.

DOI: 10.1046/j.1460-2695.1999.00220.x

Google Scholar

[8] W.F. Pan, Ch.Y. Hung, L.L. Chen: Fatigue Life Estimation under Multiaxial Loadings. Int. J. of Fatigue, Vol. 21, 1999, pp.3-10.

DOI: 10.1016/s0142-1123(98)00050-4

Google Scholar

[9] M. Sága, P. Kopas, M. Vaško: Some Computational Aspects of Vehicle Shell Frames Optimization Subjected to Fatigue Life. J. Communications, Vol. 12, No. 4, 2010, pp.73-79, ISSN 1335-4205.

DOI: 10.26552/com.c.2010.4.73-79

Google Scholar

[10] F. Trebuňa, F. Šimčák: Mechanical System Elements Resistance. Technical university of Košice, 2004, ISBN 80-8073-148-9.

Google Scholar

[11] A. Vaško: Analysis of the Factors Influencing Microstructure and Mechanical Properties of Austempered Ductile Iron. J. Communications, Vol. 11, No. 4, 2009, pp.43-47, ISSN 1335-4205.

DOI: 10.26552/com.c.2009.4.43-47

Google Scholar

[12] M. Žmindák, P. Novák, V. Dekýš, Z. Pelagić: Finite Element Thermo-mechanical Transient Analysis of Concrete Structure. Int. J. Procedia Engineering, Vol. 65, 2013, pp.224-229, Elsevier, ISSN 1877-7058.

DOI: 10.1016/j.proeng.2013.09.034

Google Scholar