Influence of Pipe Geometric Deviations on In-Pipe Machine Locomotion

Article Preview

Abstract:

The paper deals with the analysis of influence of pipe deviations on in-pipe machine locomotion. In-pipe machine locomotes inside a pipe using the friction difference principle of locomotion. Main task of the machine is inspection of inner pipe wall as the prevention of pipe crack and leaks of transported medium. Pipe systems have deviations of inner pipe wall, which are caused by production process and caused by using of pipe (deformations, sediments, changes from coupling of pipes etc.). These pipe deviations have direct influence on machine locomotion inside the pipe.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-226

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Aoshima, T. Tsujimura, T. Yabuta, A miniature mobile robot using piezo vibration for mobility in a thin tube, Journal of Dynamic Systems, Measurement, and Control Vol. 1 No. 15. pp.270-278. (1993).

DOI: 10.1115/1.2899031

Google Scholar

[2] S. Aoyagi, S. Nakai, K. Maeda, Y. Kamiya, S. Okabe, , A basic study on a mobile robot for maintaining pipes, Int. J. Japan Soc. Prec. Eng., Vol. 25, No. 3, pp.233-234. (1991).

Google Scholar

[3] Z. Wang, H. Gu, A Bristle-Based Pipeline Robot for Ill-Constraint Pipes. IEEE/ASME Transactions on Mechatronics, Vol. 13, No. 3, pp.383-392. (2008).

DOI: 10.1109/tmech.2008.924133

Google Scholar

[4] L. Sun, P. Sun, X. Qin, C. Wang, Micro Robot in Small Pipe with Electromagnetic Actuator, Proceedings of the 1998 International Symposium on Micromechatronics and Human Science MHS '98, 1998. pp.243-248. (1998).

DOI: 10.1109/mhs.1998.745789

Google Scholar

[5] Li-Hong Juang, Ming-Ni Wu, Zhi-Zhong Weng, Object identification using mobile devices, Measurement, Volume 51, May 2014, Pages 100-111, (2014).

DOI: 10.1016/j.measurement.2014.01.029

Google Scholar

[6] Ch. Choi, B. Park, S. Jung, The Design and Analysis of a Feeder Pipe Inspection Robot With an Automatic Pipe Tracking System, IEEE/ASME Trans. Mechatronics, vol. 15. (2010) 736–745.

DOI: 10.1109/tmech.2009.2032541

Google Scholar

[7] Z. Liu, F. Li, G. Zhang, An external parameter calibration method for multiple cameras based on laser rangefinder, Measurement, Volume 47, January 2014, Pages 954-962 (2014).

DOI: 10.1016/j.measurement.2013.10.029

Google Scholar

[8] A. Degani, S. Feng, H. Choset, and M. T. Mason, Minimalistic, Dynamic, Tube Climbing Robot, Proc. of 2010 IEEE Int. Conf. on Robotics and Automation Anchorage Convention District, May 3-8, 2010, Anchorage, Alaska, USA. (2010) 1100-1101.

DOI: 10.1109/robot.2010.5509948

Google Scholar

[9] H. Gonzalez-Jorge, B. Riveiro, E. Vazquez-Fernandez, J. Martínez-Sánchez, P. Arias, Metrological evaluation of Microsoft Kinect and Asus Xtion sensors, Measurement, Volume 46, Issue 6, July 2013, Pages 1800-1806, (2013).

DOI: 10.1016/j.measurement.2013.01.011

Google Scholar

[10] A. Gmiterko, M. Dovica, M. Kelemen, V. Fedák, Z. Mlýnkova, In-Pipe Bristled Micromachine. Proc. of 7th Int. Workshop on Advances Motion Control July 3-2. 2002, ISBN 0-7803-7479-7, Maribor. (2002) 467-472.

DOI: 10.1109/amc.2002.1026989

Google Scholar

[11] M. Kelemen, T. Matasovska, Simulation of the in-pipe machine locomotion based on the innertial stepping principle, Bulletin of Applied Mechanics. Vol. 1, no. 4 (2005), pp.231-246. ISSN 1801-1217. (2005).

Google Scholar

[12] J. Hung Guo et al., Motion Planning of Multiple Pattern Formation for Mobile Robots, Applied Mechanics and Materials, Volumes 284 - 287, January, 2013, pages 1877-1882, (2013).

DOI: 10.4028/www.scientific.net/amm.284-287.1877

Google Scholar

[13] M. Huang et al., Global Path Planning for Mobile Robot Based on Improved Ant Colony Algorithms, Applied Mechanics and Materials, Volume 418, September, 2013, pages 15-19, (2013).

DOI: 10.4028/www.scientific.net/amm.418.15

Google Scholar

[14] S. G. Niu et al., New Structural Design of Coal Mine Rescue Robot, Applied Mechanics and Materials, Volume 470, December, 2013, pages 650-653, (2013).

DOI: 10.4028/www.scientific.net/amm.470.650

Google Scholar

[15] L., L. Howell, A. Midha, Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms. Transactions of the ASME, Vol. 117, pp.156-165. (1995).

DOI: 10.1115/1.2826101

Google Scholar

[16] M. Vondráček et al., Multi-Robot System for Mapping of the Unknown Environment, Applied Mechanics and Materials, Volume 511-512, pages 827-833, (2014).

DOI: 10.4028/www.scientific.net/amm.511-512.827

Google Scholar

[17] P. Peng et al., Dynamic Analysis of the Wheel-Legged Mobile Robot, Applied Mechanics and Materials, Volume 344, pages 174-181, (2013).

DOI: 10.4028/www.scientific.net/amm.344.174

Google Scholar

[18] H. J. Zhang et al., Parameter Self-Adjusting Path Tracking Algorithm of Mobile Robots, Applied Mechanics and Materials, Volume 418, pages 10-14, (2013).

DOI: 10.4028/www.scientific.net/amm.418.10

Google Scholar

[19] X. D. Tan et al., A Algorithm of Path Planning Based on Multiple Mobile Robots, Applied Mechanics and Materials, Volume 470, pages 621-624, (2013).

DOI: 10.4028/www.scientific.net/amm.470.621

Google Scholar

[20] H. Wang et al., A Mobile Robot Obstacle Avoidance Method Based on Improved Potential Field Method, Applied Mechanics and Materials, Volume 467, pages 496-501, (2013).

DOI: 10.4028/www.scientific.net/amm.467.496

Google Scholar

[21] D. Koniar, L. Hargaš and M. Hrianka, Application of standard DICOM in LabVIEW, Proc. of 7th conf. Trends in Biomedical Engineering, Kladno 11. – 13. 9. 2007 ISBN 978-80-01-03777-5. (2007).

Google Scholar

[22] J. Ivanka, Tolerance requirements for positioning mechanism for measuring on cylindrical area. In: Proc. of 46 th Internacional scientific konference EAN 2008 , Experimental Stress Analysis 2008, Horni Becva, 2008, 2 - 5. 6. 2008, str. 103 - 107, ISBN 978-80-248-1774-3.

Google Scholar