[1]
S. Aoshima, T. Tsujimura, T. Yabuta, A miniature mobile robot using piezo vibration for mobility in a thin tube, Journal of Dynamic Systems, Measurement, and Control Vol. 1 No. 15. pp.270-278. (1993).
DOI: 10.1115/1.2899031
Google Scholar
[2]
S. Aoyagi, S. Nakai, K. Maeda, Y. Kamiya, S. Okabe, , A basic study on a mobile robot for maintaining pipes, Int. J. Japan Soc. Prec. Eng., Vol. 25, No. 3, pp.233-234. (1991).
Google Scholar
[3]
Z. Wang, H. Gu, A Bristle-Based Pipeline Robot for Ill-Constraint Pipes. IEEE/ASME Transactions on Mechatronics, Vol. 13, No. 3, pp.383-392. (2008).
DOI: 10.1109/tmech.2008.924133
Google Scholar
[4]
L. Sun, P. Sun, X. Qin, C. Wang, Micro Robot in Small Pipe with Electromagnetic Actuator, Proceedings of the 1998 International Symposium on Micromechatronics and Human Science MHS '98, 1998. pp.243-248. (1998).
DOI: 10.1109/mhs.1998.745789
Google Scholar
[5]
Li-Hong Juang, Ming-Ni Wu, Zhi-Zhong Weng, Object identification using mobile devices, Measurement, Volume 51, May 2014, Pages 100-111, (2014).
DOI: 10.1016/j.measurement.2014.01.029
Google Scholar
[6]
Ch. Choi, B. Park, S. Jung, The Design and Analysis of a Feeder Pipe Inspection Robot With an Automatic Pipe Tracking System, IEEE/ASME Trans. Mechatronics, vol. 15. (2010) 736–745.
DOI: 10.1109/tmech.2009.2032541
Google Scholar
[7]
Z. Liu, F. Li, G. Zhang, An external parameter calibration method for multiple cameras based on laser rangefinder, Measurement, Volume 47, January 2014, Pages 954-962 (2014).
DOI: 10.1016/j.measurement.2013.10.029
Google Scholar
[8]
A. Degani, S. Feng, H. Choset, and M. T. Mason, Minimalistic, Dynamic, Tube Climbing Robot, Proc. of 2010 IEEE Int. Conf. on Robotics and Automation Anchorage Convention District, May 3-8, 2010, Anchorage, Alaska, USA. (2010) 1100-1101.
DOI: 10.1109/robot.2010.5509948
Google Scholar
[9]
H. Gonzalez-Jorge, B. Riveiro, E. Vazquez-Fernandez, J. Martínez-Sánchez, P. Arias, Metrological evaluation of Microsoft Kinect and Asus Xtion sensors, Measurement, Volume 46, Issue 6, July 2013, Pages 1800-1806, (2013).
DOI: 10.1016/j.measurement.2013.01.011
Google Scholar
[10]
A. Gmiterko, M. Dovica, M. Kelemen, V. Fedák, Z. Mlýnkova, In-Pipe Bristled Micromachine. Proc. of 7th Int. Workshop on Advances Motion Control July 3-2. 2002, ISBN 0-7803-7479-7, Maribor. (2002) 467-472.
DOI: 10.1109/amc.2002.1026989
Google Scholar
[11]
M. Kelemen, T. Matasovska, Simulation of the in-pipe machine locomotion based on the innertial stepping principle, Bulletin of Applied Mechanics. Vol. 1, no. 4 (2005), pp.231-246. ISSN 1801-1217. (2005).
Google Scholar
[12]
J. Hung Guo et al., Motion Planning of Multiple Pattern Formation for Mobile Robots, Applied Mechanics and Materials, Volumes 284 - 287, January, 2013, pages 1877-1882, (2013).
DOI: 10.4028/www.scientific.net/amm.284-287.1877
Google Scholar
[13]
M. Huang et al., Global Path Planning for Mobile Robot Based on Improved Ant Colony Algorithms, Applied Mechanics and Materials, Volume 418, September, 2013, pages 15-19, (2013).
DOI: 10.4028/www.scientific.net/amm.418.15
Google Scholar
[14]
S. G. Niu et al., New Structural Design of Coal Mine Rescue Robot, Applied Mechanics and Materials, Volume 470, December, 2013, pages 650-653, (2013).
DOI: 10.4028/www.scientific.net/amm.470.650
Google Scholar
[15]
L., L. Howell, A. Midha, Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms. Transactions of the ASME, Vol. 117, pp.156-165. (1995).
DOI: 10.1115/1.2826101
Google Scholar
[16]
M. Vondráček et al., Multi-Robot System for Mapping of the Unknown Environment, Applied Mechanics and Materials, Volume 511-512, pages 827-833, (2014).
DOI: 10.4028/www.scientific.net/amm.511-512.827
Google Scholar
[17]
P. Peng et al., Dynamic Analysis of the Wheel-Legged Mobile Robot, Applied Mechanics and Materials, Volume 344, pages 174-181, (2013).
DOI: 10.4028/www.scientific.net/amm.344.174
Google Scholar
[18]
H. J. Zhang et al., Parameter Self-Adjusting Path Tracking Algorithm of Mobile Robots, Applied Mechanics and Materials, Volume 418, pages 10-14, (2013).
DOI: 10.4028/www.scientific.net/amm.418.10
Google Scholar
[19]
X. D. Tan et al., A Algorithm of Path Planning Based on Multiple Mobile Robots, Applied Mechanics and Materials, Volume 470, pages 621-624, (2013).
DOI: 10.4028/www.scientific.net/amm.470.621
Google Scholar
[20]
H. Wang et al., A Mobile Robot Obstacle Avoidance Method Based on Improved Potential Field Method, Applied Mechanics and Materials, Volume 467, pages 496-501, (2013).
DOI: 10.4028/www.scientific.net/amm.467.496
Google Scholar
[21]
D. Koniar, L. Hargaš and M. Hrianka, Application of standard DICOM in LabVIEW, Proc. of 7th conf. Trends in Biomedical Engineering, Kladno 11. – 13. 9. 2007 ISBN 978-80-01-03777-5. (2007).
Google Scholar
[22]
J. Ivanka, Tolerance requirements for positioning mechanism for measuring on cylindrical area. In: Proc. of 46 th Internacional scientific konference EAN 2008 , Experimental Stress Analysis 2008, Horni Becva, 2008, 2 - 5. 6. 2008, str. 103 - 107, ISBN 978-80-248-1774-3.
Google Scholar