Improved GNSS Localization with the Use of DOP Parameter

Article Preview

Abstract:

This paper presents the approach to improve localization based on GNSS. The principles of the GPS localization and impact of the DOP parameter on localization error are mathematically analyzed. The algorithm based on the use of DOP parameter and Kalman filter for the improvement of the localization accuracy suitable for small scale outdoor mobile robots and other outdoor applications is proposed. The applicability of the proposed methodology was verified by performed experiments with two common cheap miniature GPS modules and accurate high-end GNSS receiver used as a reference frame for the measurements. The obtained results affirmed the improvement of the localization accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

450-466

Citation:

Online since:

August 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. M. Valadez, R. Santerre, S. Larochelle, R. Landry Jr. (2012), Improving vertical GPS precision with a GPS-over-fiber architecture and real-time relative delay calibration, GPS Solutions, October 2012, Volume 16, Issue 4, pp.449-462.

DOI: 10.1007/s10291-011-0244-6

Google Scholar

[2] S. R. N. Jafri, S. M. N. Jafri, S. Z. Shakeel (2009).

Google Scholar

[3] A. K. Ray, L Behera, M. Jamshidi (2009), GPS and Sonar Based Area Mapping and Navigation by Mobile Robots, Proceedings of the 7th IEEE International Conference on Industrial Informatics (INDIN 2009), June 24 – 26, 2009, Cardiff, UK, p.801 – 806.

DOI: 10.1109/indin.2009.5195905

Google Scholar

[4] K. Ohno, T. Tsubouchi, B. Shigematsu, S. Yuta (2004), Differential GPS and odometry based outdoor navigation of a mobile robot, Advanced Robotics, Vol. 18, No. 6, 2004, p.611 – 635.

DOI: 10.1163/1568553041257431

Google Scholar

[5] K. Ohno, T. Tsubouchi, B. Shigematsu, S. Maeyama, S. Yuta (2003).

Google Scholar

[6] R. Lenain, B. Thuilot, C. Cariou, P. Martinet (2004).

Google Scholar

[7] C. B. Low, D. Wang (2008), GPS – Based Path Following Control for a Car – Like Wheeled Mobile Robot With Skidding and Slipping, IEEE Transactions on control systems technology, Vol. 16, No. 2, March 2008, p.340 – 347.

DOI: 10.1109/tcst.2007.903100

Google Scholar

[8] B. F. Wu, T. T. Lee, H. H. Chang, J. J. Jiang, C. N. Lien, T. Y. Liao, J. W. Perng (2007).

Google Scholar

[9] M. Li, K. Imou, K. Wakabayashi, S. Yokoyama (2009), Review of research on agricultural vehicle autonomous guidance, International Journal of Agricultural and Biological Engineering, Vol. 2, No. 3, 2009, p.1 – 26.

Google Scholar

[10] R. J. P. Bree, C. C. J. M. Tiberius, A. Hauschild (2009), Real Time Satellite Clocks in Single Frequency Precise Point Positioning, Proc. ION-GNSS-2009, Sept. 22 – 25, 2009, Savannah, USA, p.22 – 25.

Google Scholar

[11] K. Židek, T. Saloky, Z. Polanecká (2006), Usability of GPS systems for mobile robots navigation, SAMI, 2006, Budapest, p.266–277.

Google Scholar

[12] S. Yamaguchi, T. Tanaka (2006), GPS Standard Positioning using Kalman Filter, Proceedings of the SICE – ICASE International Joint Conference 2006, Oct. 18 – 21, 2006 in Bexco, Busan, Korea, p.1351 –1354.

DOI: 10.1109/sice.2006.315572

Google Scholar

[13] S. J. Kwon, K. W. Yang, S. Park, Y. Ryuh (2005), Robust Mobile Robot Localization with Combined Kalman Filter – Perturbation Estimator, IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 2005, p.4003 – 4008.

DOI: 10.1109/iros.2005.1544980

Google Scholar

[14] R. Lenain, B. Thuilot, C. Cariou, P. Martinet (2004).

Google Scholar

[15] A. Georgiev, P. K. Allen, Localization Methods for a Mobile Robot in Urban Environments, Open Access at: http: /www. cs. columbia. edu/~allen/PAPERS.

Google Scholar

[16] H. N. Acosta, J. M. Toloza (2012), A tool for prototyping a precision GPS system, International Journal of Computers & Technology, Volume 3, No. 1, 2012, p.15 – 23.

DOI: 10.24297/ijct.v3i1a.2722

Google Scholar

[17] Z. Miaoyan, Z. Jun, Q. Yong (2008), Satellite selection for multi-constellation, Position, Location and Navigation Symposium, 2008 IEEE/ION. IEEE, 2008, p.1053 – 1059.

DOI: 10.1109/plans.2008.4570112

Google Scholar

[18] I. G. Petrovski, T. Tsuji (2012), Digital Satellite Navigation and Geophysics (A Practical Guide with GNSS Signal Simulator and Receiver Laboratory), Cambridge University Press, (2012).

DOI: 10.1017/cbo9780511659072

Google Scholar

[19] I. Virgala, P. Frankovský, M. Kenderová, Friction Effect Analysis of a DC motor, American Journal of Mechanical Engineering (2013), Vol. 1, No. 1, pp.1-5.

DOI: 10.12691/ajme-1-1-1

Google Scholar

[20] M. Kelemen, D.J. Colville, T. Kelemenová, I. Virgala, Ľ. Miková, A Concept of the Differentially Driven Three Wheeled Robot, International Journal of Applied Mechanics and Engineering, Vol. 18, 2013, pp.687-698.

DOI: 10.2478/ijame-2013-0042

Google Scholar