Analysis of Uncertainty of Tilt Measurement with Accelerometer

Article Preview

Abstract:

The paper deals with the analysis of uncertainty of tilt measurement using accelerometer. Low cost accelerometer based on the principle of heat array is used for tilt measurement. One chip microcontroller is used for data processing from accelerometer. The knowledge of uncertainty of measurement for this measuring chain is necessary for our application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

548-556

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Memsic Inc., Accelerometers. Available online. cited 06-02-2014. http: /www. memsic. com/accelerometers.

Google Scholar

[2] Parallax Inc. Memsic 2125 Dual-axis Accelerometer. Available online. cited 06-02-2014. http: /www. parallax. com/product/28017#downloads.

Google Scholar

[3] Parallax Inc., Memsic 2125 Dual-Axis Accelerometer (#28017). Technical Specification. Available online. cited 06-03-2014. http: /www. parallax. com/downloads/memsic-2125-dual-axis-accelerometer-product-guide.

Google Scholar

[4] Parallax Inc., Memsic 2125 Accelerometer Demo Kit (#28017) Acceleration, Tilt, and Rotation Measurement. Available online. cited 06-03-2014. http: /www. parallax. com/downloads/memsic-2125-dual-axis-accelerometer-appkit.

Google Scholar

[5] Parallax Inc., Improved, Ultra Low Noise ±3 g Dual Axis Accelerometer with Digital Outputs. Available online. cited 06-03-2014. http: /www. parallax. com/downloads/memsic-2125-dual-axis-accelerometer-appkit.

Google Scholar

[6] P. Božek, T. Pintér, Gyroscopes and Accelerometers in the Robot Control. In: Applied Mechanics and Materials. ICMMME 2012, Dalian, 5 - 6 October 2012 (2013), pp.584-588.

DOI: 10.4028/www.scientific.net/amm.248.584

Google Scholar

[7] JCGM 100 – Evaluation of measurement data – Guide to the expression of uncertainty in measurement (ISO/IEC Guide 98-3). First edition September 2008. Available online: http: /www. iso. org/sites/JCGM/GUM-JCGM100. htm; http: /www. bipm. org/en/publications/guides/gum_print. htm.

Google Scholar

[8] JCGM 104 – Evaluation of measurement data – An introduction to the Guide to the expression of uncertainty in measurement, (ISO/IEC Guide 98-1). First edition July 2009. Available online: http: /www. bipm. org/en/publications/guides/gum_print. html.

Google Scholar

[9] JCGM 200 - International vocabulary of metrology – Basic and general concepts and associated terms (VIM) 3rd edition (2008 version with minor corrections). © JCGM 2012 Available online: http: /www. iso. org/sites/JCGM/VIM-JCGM200. htm.

DOI: 10.1016/j.clinbiochem.2008.09.007

Google Scholar

[10] EAL-R2 - Expression of the Uncertainty of Measurement in Calibration. European Cooperation for Accreditation of Laboratories, Edition 1, April (1997).

Google Scholar

[11] EAL-R2-S1, Expression of the uncertainty of measurmement in calibration. European Cooperation for Accreditation. Dec (1999).

Google Scholar

[12] EA - 4/16: 2003). Guidelines on the expresion of uncertainty in quantitative testing. European Cooperation for Accreditation. December 2003 rev00.

Google Scholar

[13] EA-4/02 - Expression of the uncertainty of measurement in calibration. European Cooperation for Accreditation. Released in December (1999).

Google Scholar

[14] Li-Hong Juang, Ming-Ni Wu, Zhi-Zhong Weng, Object identification using mobile devices, Measurement, Volume 51, May 2014, Pages 100-111, (2014).

DOI: 10.1016/j.measurement.2014.01.029

Google Scholar

[15] M. Dekan, F. Duchoň, L. Jurišica, A. Vitko, A. Babinec, iRobot Create Used in Education, Journal of Mechanics Engineering and Automation. - ISSN 2159-5275. - ISSN 2159-5283. - Vol. 3, Iss. 4, 2013, pages 197-202, (2013).

DOI: 10.17265/2159-5275/2013.04.002

Google Scholar

[16] Zhen Liu, Fengjiao Li, Guangjun Zhang, An external parameter calibration method for multiple cameras based on laser rangefinder, Measurement, Volume 47, January 2014, Pages 954-962 (2014).

DOI: 10.1016/j.measurement.2013.10.029

Google Scholar

[17] P. De Cristoforis, S. Pedre, M. Nitsche, T. Fischer, F. Pessacg, C. Di Pietro, A Behavior-based approach for educational robotics activities, IEEE Transactions on Education, Volume 56, Issue 1, 2013, Article number 6341861, Pages 61-66, (2013).

DOI: 10.1109/te.2012.2220359

Google Scholar

[18] H. Gonzalez-Jorge, B. Riveiro, E. Vazquez-Fernandez, J. Martínez-Sánchez, P. Arias, Metrological evaluation of Microsoft Kinect and Asus Xtion sensors, Measurement, Volume 46, Issue 6, July 2013, Pages 1800-1806, (2013).

DOI: 10.1016/j.measurement.2013.01.011

Google Scholar

[19] F. Nagata, N. Kitahara, A. Otsuka, K. Sakakibara, K. Watanabe, M.K. Habib, A proposal of experimental education system of mechatronics, Artificial Life and Robotics, Volume 17, Issue 3-4, 2013, Pages 378-382, (2013).

DOI: 10.1007/s10015-012-0069-6

Google Scholar

[20] P. Benavidez, C. Gleinser, A. Jaimes, J. Labrado, C. Riojas, M. Jamshidi, L.B. Endowed, Design of semi-autonomous robots for competitive robotics, World Automation Congress Proceedings, World Automation Congress, WAC 2012; Puerto Vallarta; Mexico; 24 June 2012 through 28 June 2012; Code 94214, (2012).

DOI: 10.1109/wac.2016.7582999

Google Scholar

[21] J. Hung Guo et al., Motion Planning of Multiple Pattern Formation for Mobile Robots, Applied Mechanics and Materials, Volumes 284 - 287, January, 2013, pages 1877-1882, (2013).

DOI: 10.4028/www.scientific.net/amm.284-287.1877

Google Scholar

[22] Min Huang et al., Global Path Planning for Mobile Robot Based on Improved Ant Colony Algorithms, Applied Mechanics and Materials, Volume 418, September, 2013, pages 15-19, (2013).

DOI: 10.4028/www.scientific.net/amm.418.15

Google Scholar

[23] Shu Guang Niu et al., New Structural Design of Coal Mine Rescue Robot, Applied Mechanics and Materials, Volume 470, December, 2013, pages 650-653, (2013).

DOI: 10.4028/www.scientific.net/amm.470.650

Google Scholar

[24] Yang Xue et al., A New Approach for Autonomous Robot Obstacle Avoidance Using PSD Infrared Sensor Combined with Digital Compass, Applied Mechanics and Materials, Volume 511-512, February, 2014, pages 101-104, (2014).

DOI: 10.4028/www.scientific.net/amm.511-512.101

Google Scholar

[25] M. Vondráček et al., Multi-Robot System for Mapping of the Unknown Environment, Applied Mechanics and Materials, Volume 511-512, pages 827-833, (2014).

DOI: 10.4028/www.scientific.net/amm.511-512.827

Google Scholar

[26] P. Peng et al., Dynamic Analysis of the Wheel-Legged Mobile Robot, Applied Mechanics and Materials, Volume 344, pages 174-181, (2013).

DOI: 10.4028/www.scientific.net/amm.344.174

Google Scholar

[27] H. Ji Zhang et al., Parameter Self-Adjusting Path Tracking Algorithm of Mobile Robots, Applied Mechanics and Materials, Volume 418, pages 10-14, (2013).

DOI: 10.4028/www.scientific.net/amm.418.10

Google Scholar

[28] X. Dong Tan et al., A Algorithm of Path Planning Based on Multiple Mobile Robots, Applied Mechanics and Materials, Volume 470, pages 621-624, (2013).

DOI: 10.4028/www.scientific.net/amm.470.621

Google Scholar

[29] H. Wang et al., A Mobile Robot Obstacle Avoidance Method Based on Improved Potential Field Method, Applied Mechanics and Materials, Volume 467, pages 496-501, (2013).

DOI: 10.4028/www.scientific.net/amm.467.496

Google Scholar

[30] D. Koniar, L. Hargaš and M. Hrianka, Application of standard DICOM in LabVIEW, Proc. of 7th conf. Trends in Biomedical Engineering, Kladno 11. – 13. 9. 2007 ISBN 978-80-01-03777-5. (2007).

Google Scholar

[31] J. Ivanka, Study and recommended specifications for probes used to measure mechatronic systems. In. Acta Mechanica Slovaca, Košice 3-B/2008, MMaMS, Vol. 12, Modelling of the Mechanics and Mechatronics Systems 2008, 14. - 16. 10. 2008, Dunajec, Cervený Kláster, Slovenska republika, str. 347 - 353, ISSN 1335 - 2393.

Google Scholar