[1]
Memsic Inc., Accelerometers. Available online. cited 06-02-2014. http: /www. memsic. com/accelerometers.
Google Scholar
[2]
Parallax Inc. Memsic 2125 Dual-axis Accelerometer. Available online. cited 06-02-2014. http: /www. parallax. com/product/28017#downloads.
Google Scholar
[3]
Parallax Inc., Memsic 2125 Dual-Axis Accelerometer (#28017). Technical Specification. Available online. cited 06-03-2014. http: /www. parallax. com/downloads/memsic-2125-dual-axis-accelerometer-product-guide.
Google Scholar
[4]
Parallax Inc., Memsic 2125 Accelerometer Demo Kit (#28017) Acceleration, Tilt, and Rotation Measurement. Available online. cited 06-03-2014. http: /www. parallax. com/downloads/memsic-2125-dual-axis-accelerometer-appkit.
Google Scholar
[5]
Parallax Inc., Improved, Ultra Low Noise ±3 g Dual Axis Accelerometer with Digital Outputs. Available online. cited 06-03-2014. http: /www. parallax. com/downloads/memsic-2125-dual-axis-accelerometer-appkit.
Google Scholar
[6]
P. Božek, T. Pintér, Gyroscopes and Accelerometers in the Robot Control. In: Applied Mechanics and Materials. ICMMME 2012, Dalian, 5 - 6 October 2012 (2013), pp.584-588.
DOI: 10.4028/www.scientific.net/amm.248.584
Google Scholar
[7]
JCGM 100 – Evaluation of measurement data – Guide to the expression of uncertainty in measurement (ISO/IEC Guide 98-3). First edition September 2008. Available online: http: /www. iso. org/sites/JCGM/GUM-JCGM100. htm; http: /www. bipm. org/en/publications/guides/gum_print. htm.
Google Scholar
[8]
JCGM 104 – Evaluation of measurement data – An introduction to the Guide to the expression of uncertainty in measurement, (ISO/IEC Guide 98-1). First edition July 2009. Available online: http: /www. bipm. org/en/publications/guides/gum_print. html.
Google Scholar
[9]
JCGM 200 - International vocabulary of metrology – Basic and general concepts and associated terms (VIM) 3rd edition (2008 version with minor corrections). © JCGM 2012 Available online: http: /www. iso. org/sites/JCGM/VIM-JCGM200. htm.
DOI: 10.1016/j.clinbiochem.2008.09.007
Google Scholar
[10]
EAL-R2 - Expression of the Uncertainty of Measurement in Calibration. European Cooperation for Accreditation of Laboratories, Edition 1, April (1997).
Google Scholar
[11]
EAL-R2-S1, Expression of the uncertainty of measurmement in calibration. European Cooperation for Accreditation. Dec (1999).
Google Scholar
[12]
EA - 4/16: 2003). Guidelines on the expresion of uncertainty in quantitative testing. European Cooperation for Accreditation. December 2003 rev00.
Google Scholar
[13]
EA-4/02 - Expression of the uncertainty of measurement in calibration. European Cooperation for Accreditation. Released in December (1999).
Google Scholar
[14]
Li-Hong Juang, Ming-Ni Wu, Zhi-Zhong Weng, Object identification using mobile devices, Measurement, Volume 51, May 2014, Pages 100-111, (2014).
DOI: 10.1016/j.measurement.2014.01.029
Google Scholar
[15]
M. Dekan, F. Duchoň, L. Jurišica, A. Vitko, A. Babinec, iRobot Create Used in Education, Journal of Mechanics Engineering and Automation. - ISSN 2159-5275. - ISSN 2159-5283. - Vol. 3, Iss. 4, 2013, pages 197-202, (2013).
DOI: 10.17265/2159-5275/2013.04.002
Google Scholar
[16]
Zhen Liu, Fengjiao Li, Guangjun Zhang, An external parameter calibration method for multiple cameras based on laser rangefinder, Measurement, Volume 47, January 2014, Pages 954-962 (2014).
DOI: 10.1016/j.measurement.2013.10.029
Google Scholar
[17]
P. De Cristoforis, S. Pedre, M. Nitsche, T. Fischer, F. Pessacg, C. Di Pietro, A Behavior-based approach for educational robotics activities, IEEE Transactions on Education, Volume 56, Issue 1, 2013, Article number 6341861, Pages 61-66, (2013).
DOI: 10.1109/te.2012.2220359
Google Scholar
[18]
H. Gonzalez-Jorge, B. Riveiro, E. Vazquez-Fernandez, J. Martínez-Sánchez, P. Arias, Metrological evaluation of Microsoft Kinect and Asus Xtion sensors, Measurement, Volume 46, Issue 6, July 2013, Pages 1800-1806, (2013).
DOI: 10.1016/j.measurement.2013.01.011
Google Scholar
[19]
F. Nagata, N. Kitahara, A. Otsuka, K. Sakakibara, K. Watanabe, M.K. Habib, A proposal of experimental education system of mechatronics, Artificial Life and Robotics, Volume 17, Issue 3-4, 2013, Pages 378-382, (2013).
DOI: 10.1007/s10015-012-0069-6
Google Scholar
[20]
P. Benavidez, C. Gleinser, A. Jaimes, J. Labrado, C. Riojas, M. Jamshidi, L.B. Endowed, Design of semi-autonomous robots for competitive robotics, World Automation Congress Proceedings, World Automation Congress, WAC 2012; Puerto Vallarta; Mexico; 24 June 2012 through 28 June 2012; Code 94214, (2012).
DOI: 10.1109/wac.2016.7582999
Google Scholar
[21]
J. Hung Guo et al., Motion Planning of Multiple Pattern Formation for Mobile Robots, Applied Mechanics and Materials, Volumes 284 - 287, January, 2013, pages 1877-1882, (2013).
DOI: 10.4028/www.scientific.net/amm.284-287.1877
Google Scholar
[22]
Min Huang et al., Global Path Planning for Mobile Robot Based on Improved Ant Colony Algorithms, Applied Mechanics and Materials, Volume 418, September, 2013, pages 15-19, (2013).
DOI: 10.4028/www.scientific.net/amm.418.15
Google Scholar
[23]
Shu Guang Niu et al., New Structural Design of Coal Mine Rescue Robot, Applied Mechanics and Materials, Volume 470, December, 2013, pages 650-653, (2013).
DOI: 10.4028/www.scientific.net/amm.470.650
Google Scholar
[24]
Yang Xue et al., A New Approach for Autonomous Robot Obstacle Avoidance Using PSD Infrared Sensor Combined with Digital Compass, Applied Mechanics and Materials, Volume 511-512, February, 2014, pages 101-104, (2014).
DOI: 10.4028/www.scientific.net/amm.511-512.101
Google Scholar
[25]
M. Vondráček et al., Multi-Robot System for Mapping of the Unknown Environment, Applied Mechanics and Materials, Volume 511-512, pages 827-833, (2014).
DOI: 10.4028/www.scientific.net/amm.511-512.827
Google Scholar
[26]
P. Peng et al., Dynamic Analysis of the Wheel-Legged Mobile Robot, Applied Mechanics and Materials, Volume 344, pages 174-181, (2013).
DOI: 10.4028/www.scientific.net/amm.344.174
Google Scholar
[27]
H. Ji Zhang et al., Parameter Self-Adjusting Path Tracking Algorithm of Mobile Robots, Applied Mechanics and Materials, Volume 418, pages 10-14, (2013).
DOI: 10.4028/www.scientific.net/amm.418.10
Google Scholar
[28]
X. Dong Tan et al., A Algorithm of Path Planning Based on Multiple Mobile Robots, Applied Mechanics and Materials, Volume 470, pages 621-624, (2013).
DOI: 10.4028/www.scientific.net/amm.470.621
Google Scholar
[29]
H. Wang et al., A Mobile Robot Obstacle Avoidance Method Based on Improved Potential Field Method, Applied Mechanics and Materials, Volume 467, pages 496-501, (2013).
DOI: 10.4028/www.scientific.net/amm.467.496
Google Scholar
[30]
D. Koniar, L. Hargaš and M. Hrianka, Application of standard DICOM in LabVIEW, Proc. of 7th conf. Trends in Biomedical Engineering, Kladno 11. – 13. 9. 2007 ISBN 978-80-01-03777-5. (2007).
Google Scholar
[31]
J. Ivanka, Study and recommended specifications for probes used to measure mechatronic systems. In. Acta Mechanica Slovaca, Košice 3-B/2008, MMaMS, Vol. 12, Modelling of the Mechanics and Mechatronics Systems 2008, 14. - 16. 10. 2008, Dunajec, Cervený Kláster, Slovenska republika, str. 347 - 353, ISSN 1335 - 2393.
Google Scholar