Active Control of Thermally Induced Vibrations in Smart Structure Instrumented with Piezoelectric Materials

Article Preview

Abstract:

In this paper, a finite element model of piezolaminated composite shell structure is developed using nine-noded degenerated shell element. The stiffness, mass and thermo-electro-mechanical coupling effect is incorporated in finite element modeling using first order shear deformation theory and linear piezoelectric theory. The sensor voltage is calculated using the same formulation and fuzzy logic controller is used to calculate the actuator voltage. The fuzzy logic controller is designed as double input-single output (DISO) system using 49 If-Then rules. The performance of fuzzy logic controller is compared with convention constant-gain negative feedback controller. The simulation results illustrate the superiority of fuzzy logic controller over constant-gain negative feedback controller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-174

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Fahy, J. Walker J. Advanced applications in acoustics, noise and vibration. Taylor & Francis, New York, 2004.

Google Scholar

[2] M. V. Gandhi, B. S. Thompson. Smart materials and structures. Springer; 1992.

Google Scholar

[3] J. Lin, W. Z. Liu. Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam. J. Sound Vibr. 296 (2006) 567-582.

DOI: 10.1016/j.jsv.2006.01.066

Google Scholar

[4] M. Sharma, S. Singh, B. Sachdeva. Modal control of a plate using a fuzzy logic controller. Smart Mater. Struct. 16 (2007) 1331.

DOI: 10.1088/0964-1726/16/4/047

Google Scholar

[5] Y. Zhang, H. Niu, S. Xie, X. Zhang. Numerical and experimental envestigation of active vibration control in a cylindrical shell partially covered by a laminated PVDF actuator. Smart Mater. Struct. 17 (2008) 1-12.

DOI: 10.1088/0964-1726/17/3/035024

Google Scholar

[6] S.S. Rao, M. Sunar. Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures. AIAA J. 31 (1993) 1280-1286.

DOI: 10.2514/3.11764

Google Scholar

[7] S. Raja, K. Rohwer, M. Rose. Piezothermoelastic modelling and active vibration control of laminated composite beams. J. Intell. Mater. Sys. Struct. 10 (1999) 890-899.

DOI: 10.1106/gppm-h4fu-8wue-g63k

Google Scholar

[8] H. J. Lee, D. A. Saravanos. A mixed multi-field finite element formulation for thermopiezoelectric composite shells. Int. J. Solids Struct. 37 (2000) 4949-4967.

DOI: 10.1016/s0020-7683(99)00192-4

Google Scholar

[9] S. Raja, P. K. Sinha, G. Prathap, D. Dwarakanathan. Thermally induced vibration control of composite plates and shells with piezoelectric active damping. Smart Mater. Struct. 13 (2004) 939-950.

DOI: 10.1088/0964-1726/13/4/032

Google Scholar

[10] S. Narayanan, V. Balamurugan. Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators. J. Sound Vibr. 262 (2003) 529-562.

DOI: 10.1016/s0022-460x(03)00110-x

Google Scholar

[11] A. Sharma, C. K. Susheel, R. Kumar, V. S. Chauhan. Fuzzy logic based active vibration controller. Appl. Mech. Mater. 367 (2013) 357-362.

DOI: 10.4028/www.scientific.net/amm.367.357

Google Scholar

[12] A. Sharma, R. Kumar, R. Vaish, V. S. Chauhan. Lead-free piezoelectric materials performance in structural active vibration control. J. Intell. Mater. Sys. Struct. (2013).

Google Scholar