[1]
Information on http: /en. wikipedia. org/wiki/Robot#Dirty. 2C_dangerous. 2C_dull_or_inaccessible_tasks.
Google Scholar
[2]
S. Krenich, M. Urbanczyk, Six-legged walking robot for inspection tasks, Solid State Phenomena, Vol. 180, 2012, pp.137-147.
DOI: 10.4028/www.scientific.net/ssp.180.137
Google Scholar
[3]
M. Sfakiotakis, D. M. Lane, J. Bruce, C. Davies, Review of Fish Swimming Modes for Aquatic Locomotion, IEEE Journal of Oceanic Engineering, vol. 24, no. 2, 1999, pp.237-252.
DOI: 10.1109/48.757275
Google Scholar
[4]
J. Yu, M. Tan, J. Zhang, Fish-Inspired Swimming Simulation and Robotic Implementation, Robotics (ISR), 41st International Symposium on 6th German Conference on Robotics (ROBOTIK), 2010, pp.1158-1163.
Google Scholar
[5]
W. Wang, J. Yu, M. Wang, R. Ding, Mechanical Design and Preliminary Realization of Robotic Fish with Multiple Control Surfaces, Proceedings of the 29th Chinese Control Conference, 2010, Beijing, China, pp.3758-3762.
Google Scholar
[6]
D. Korkmaz, U. Budak, C. Bal, G. Ozmen Koca, Z. H. Akpolat, Modeling and Implementation of a Biomimetic Robotic Fish, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Sorrento 2012, pp.1187-1192.
DOI: 10.1109/speedam.2012.6264510
Google Scholar
[7]
A. Roy Chowdhury, B. Prasad, V. Vishwanathan, R. Kumar,S. K. Panda, Implementation of a BCF Mode Bio-mimetic Robotic-Fish Underwater Vehicle based on Lighthill Mathematical Model, 12th International Conference on Control, Automation and Systems, Jeju Island, Korea, 2012, pp.437-442.
DOI: 10.1109/auv.2012.6380721
Google Scholar
[8]
J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, J. Zhang, On a Bio-inspired Amphibious Robot Capable of Multimodal Motion, IEEE/ASME Transactions On Mechatronics, vol. 17, no. 5, 2012, pp.847-856.
DOI: 10.1109/tmech.2011.2132732
Google Scholar
[9]
L. Wen, T. Wang, G. Wu, J. Liang, C. Wang, Novel Method for the Modeling and Control Investigation of Efficient Swimming for Robotic Fish, IEEE Transactions On Industrial Electronics, vol. 59, no. 8, 2012, pp.3176-3188.
DOI: 10.1109/tie.2011.2151812
Google Scholar
[10]
Z. Li, R. Du, Design and Analysis of a Biomimetic Wire-Driven Flapping Propeller, The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Roma, 2012, pp.276-281.
DOI: 10.1109/biorob.2012.6290774
Google Scholar
[11]
T. Salumae, I. Ranó, O. Akanyeti, M. Kruusmaa, Against the Flow: A Braitenberg Controller for a Fish Robot, 2012 IEEE International Conference on Robotics and Automation RiverCentre, Saint Paul, Minnesota, USA, 2012, pp.4210-4215.
DOI: 10.1109/icra.2012.6225023
Google Scholar
[12]
K. H. Low, Current and Future Trends of Biologically Inspired Underwater Vehicles, Defense Science Research Conference and Expo (DSR), Singapore, 2011, pp.1-8.
DOI: 10.1109/dsr.2011.6026887
Google Scholar
[13]
M. Malec, M. Morawski, J. Zając: Fish – Like Swimming Prototype of Mobile Underwater Robot, Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 4, no. 3, 2010, pp.25-30.
Google Scholar
[14]
M. Malec, M. Morawski, J. Zając: Biomimetic Drives of Underwater Mobile Robots in Context of Development of the CyberFish (in polish), PAR, Pomiary, Automatyka, Robotyka, no2, 2011, pp.402-410.
Google Scholar
[15]
M. Malec, M. Morawski, P. Szymak, Measurement of the Movement of the Underwater Vehicle with Undulating Propulsion Using Inertial Measurement Unit (in polish), Zeszyty Naukowe Akademii Marynarki Wojennej, no. 185A, Gdynia, 2011, pp.275-284.
DOI: 10.2478/sjpna-2018-0014
Google Scholar
[16]
M. Malec, M. Morawski, Influence of Control Parameters of Biomimetic Underwater Mobile Robot on its Thrust for Different Variants of Caudal Fin, (in polish), Elektronika - Konstrukcje, Technlogie, Zastosowania, no. 12, 2013, pp.99-102.
Google Scholar
[17]
M. Morawski, M. Malec, P. Szymak, A. Trzmiel, Analysis of Parameters of Traveling Wave Impact on the Speed of Biomimetic Underwater Vehicle, Solid State Phenomena, Vol. 210, 2014, pp.273-279.
DOI: 10.4028/www.scientific.net/ssp.210.273
Google Scholar
[18]
A. Osyczka, S. Krenich, Evolutionary Algorithms for Global Optimization, Chapter in J. Pinter (Ed. ) Global Optimization – Scientific and Engineering Case Studies. Springer, 2006, pp.267-300.
Google Scholar