Development of CyberFish – Polish Biomimetic Unmanned Underwater Vehicle BUUV

Article Preview

Abstract:

Paper presents gradual progress in the development of biomimetic mobile underwater robot with undulating propulsion starting from the rugged but functional first version of CyberFish through very agile and manoeuvrable second and third version till fifth one – accurately imitating real fish. Trends in BUUV technology is briefly described in the introduction. The second and third sections describe previous, and actual state of CyberFish project successfully carried out at Cracow University of Technology and focusing on the succeeding robots design and construction. Paper is summarized with problems of the BUUV technology development yet to be solved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-82

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http: /en. wikipedia. org/wiki/Robot#Dirty. 2C_dangerous. 2C_dull_or_inaccessible_tasks.

Google Scholar

[2] S. Krenich, M. Urbanczyk, Six-legged walking robot for inspection tasks, Solid State Phenomena, Vol. 180, 2012, pp.137-147.

DOI: 10.4028/www.scientific.net/ssp.180.137

Google Scholar

[3] M. Sfakiotakis, D. M. Lane, J. Bruce, C. Davies, Review of Fish Swimming Modes for Aquatic Locomotion, IEEE Journal of Oceanic Engineering, vol. 24, no. 2, 1999, pp.237-252.

DOI: 10.1109/48.757275

Google Scholar

[4] J. Yu, M. Tan, J. Zhang, Fish-Inspired Swimming Simulation and Robotic Implementation, Robotics (ISR), 41st International Symposium on 6th German Conference on Robotics (ROBOTIK), 2010, pp.1158-1163.

Google Scholar

[5] W. Wang, J. Yu, M. Wang, R. Ding, Mechanical Design and Preliminary Realization of Robotic Fish with Multiple Control Surfaces, Proceedings of the 29th Chinese Control Conference, 2010, Beijing, China, pp.3758-3762.

Google Scholar

[6] D. Korkmaz, U. Budak, C. Bal, G. Ozmen Koca, Z. H. Akpolat, Modeling and Implementation of a Biomimetic Robotic Fish, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Sorrento 2012, pp.1187-1192.

DOI: 10.1109/speedam.2012.6264510

Google Scholar

[7] A. Roy Chowdhury, B. Prasad, V. Vishwanathan, R. Kumar,S. K. Panda, Implementation of a BCF Mode Bio-mimetic Robotic-Fish Underwater Vehicle based on Lighthill Mathematical Model, 12th International Conference on Control, Automation and Systems, Jeju Island, Korea, 2012, pp.437-442.

DOI: 10.1109/auv.2012.6380721

Google Scholar

[8] J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, J. Zhang, On a Bio-inspired Amphibious Robot Capable of Multimodal Motion, IEEE/ASME Transactions On Mechatronics, vol. 17, no. 5, 2012, pp.847-856.

DOI: 10.1109/tmech.2011.2132732

Google Scholar

[9] L. Wen, T. Wang, G. Wu, J. Liang, C. Wang, Novel Method for the Modeling and Control Investigation of Efficient Swimming for Robotic Fish, IEEE Transactions On Industrial Electronics, vol. 59, no. 8, 2012, pp.3176-3188.

DOI: 10.1109/tie.2011.2151812

Google Scholar

[10] Z. Li, R. Du, Design and Analysis of a Biomimetic Wire-Driven Flapping Propeller, The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Roma, 2012, pp.276-281.

DOI: 10.1109/biorob.2012.6290774

Google Scholar

[11] T. Salumae, I. Ranó, O. Akanyeti, M. Kruusmaa, Against the Flow: A Braitenberg Controller for a Fish Robot, 2012 IEEE International Conference on Robotics and Automation RiverCentre, Saint Paul, Minnesota, USA, 2012, pp.4210-4215.

DOI: 10.1109/icra.2012.6225023

Google Scholar

[12] K. H. Low, Current and Future Trends of Biologically Inspired Underwater Vehicles, Defense Science Research Conference and Expo (DSR), Singapore, 2011, pp.1-8.

DOI: 10.1109/dsr.2011.6026887

Google Scholar

[13] M. Malec, M. Morawski, J. Zając: Fish – Like Swimming Prototype of Mobile Underwater Robot, Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 4, no. 3, 2010, pp.25-30.

Google Scholar

[14] M. Malec, M. Morawski, J. Zając: Biomimetic Drives of Underwater Mobile Robots in Context of Development of the CyberFish (in polish), PAR, Pomiary, Automatyka, Robotyka, no2, 2011, pp.402-410.

Google Scholar

[15] M. Malec, M. Morawski, P. Szymak, Measurement of the Movement of the Underwater Vehicle with Undulating Propulsion Using Inertial Measurement Unit (in polish), Zeszyty Naukowe Akademii Marynarki Wojennej, no. 185A, Gdynia, 2011, pp.275-284.

DOI: 10.2478/sjpna-2018-0014

Google Scholar

[16] M. Malec, M. Morawski, Influence of Control Parameters of Biomimetic Underwater Mobile Robot on its Thrust for Different Variants of Caudal Fin, (in polish), Elektronika - Konstrukcje, Technlogie, Zastosowania, no. 12, 2013, pp.99-102.

Google Scholar

[17] M. Morawski, M. Malec, P. Szymak, A. Trzmiel, Analysis of Parameters of Traveling Wave Impact on the Speed of Biomimetic Underwater Vehicle, Solid State Phenomena, Vol. 210, 2014, pp.273-279.

DOI: 10.4028/www.scientific.net/ssp.210.273

Google Scholar

[18] A. Osyczka, S. Krenich, Evolutionary Algorithms for Global Optimization, Chapter in J. Pinter (Ed. ) Global Optimization – Scientific and Engineering Case Studies. Springer, 2006, pp.267-300.

Google Scholar