An Effective Implementation of the Nonlinear Homotopy Method for MOS Transistor Circuits

Article Preview

Abstract:

Recently, an efficient homotopy method termed the nonlinear homotopy method (NLH) has been proposed for finding DC operating points of MOS transistor circuits. This method is not only efficient but also globally convergent. However, the programming of sophisticated homotopy methods is often difficult for non-experts or beginners. In this paper, an effective method for implementing the MOS NLH method on SPICE is proposed. By this method, we can implement the MOS NLH method from a good initial solution with various efficient techniques and without programming.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-172

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits. Univ. California, Berkeley, CA, ERL-M520, May (1975).

Google Scholar

[2] C. W. Ho, A. E. Ruehli and P. A. Brennan. The modified nodal approach to network analysis[J]. IEEE Trans. Circuits & Syst., 1975, CAS-22(6): 504-509.

DOI: 10.1109/tcs.1975.1084079

Google Scholar

[3] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, (1970).

DOI: 10.1016/b978-0-12-528550-6.50017-x

Google Scholar

[4] R. C. Melville, L. Trajkovic, S. -C. Fang. and L. T. Watson. Artificial parameter homotopy methods for the DC operating point problem[J]. IEEE Trans. Cornput. -Aided Des. Integrated Circuits & Syst., 1993, CAD-12(6): 861-877.

DOI: 10.1109/43.229761

Google Scholar

[5] K. Yamamura, T. Sekiguchi and Y. Inoue. A fixed-point homotopy method for solving modified nodal equations[J]. IEEE Trans. Circuits & Syst., 1999, 46(6): 654-665.

DOI: 10.1109/81.768822

Google Scholar

[6] Y. Inoue, S. Kusanobu, K. Yamamura and M. Ando. A homotopy method using a nonlinear auxiliary function for solving transistor circuits[J]. IEICE Trans. Inf. & Syst., 2005, E88-D(7): 1401-1408.

DOI: 10.1093/ietisy/e88-d.7.1401

Google Scholar

[7] W. Kuroki and K. Yamamura. An efficient homotopy method that can be easily implemented on SPICE[J]. IEICE Trans. Fundamentals, 2006, E89-A(11): 3320-3326.

DOI: 10.1093/ietfec/e89-a.11.3320

Google Scholar

[8] Tadeusiewicz M and Hałgas S. A contraction method for locating all the DC solutions of circuits containing bipolar transistors[J]. Circuits Syst. Signal Process, 2012, 31(3): 1159–1166.

DOI: 10.1007/s00034-011-9362-1

Google Scholar

[9] A. Ushida and L. O. Chua. Tracing solution curves of nonlinear equations with sharp turning points[J]. Int. J. Circuit Theory & Applications, 1986, 12(1): 1-21.

DOI: 10.1002/cta.4490120102

Google Scholar

[10] Y. Inoue and S. Kusanobu. Theorems on the unique initial solution for globally convergent homotopy methods[J]. IEICE Trans. Fundamentals, 2003, E86-A(9): 2184-2191.

Google Scholar

[11] Y. Inoue, S. Kusanobu, K. Yamamura and M. Ando. An initial solution algorithm for globally convergent homotopy methods[J]. IEICE Trans. Fundamentals, 2004, E87-A(4): 780-786.

DOI: 10.1109/iscas.2003.1204989

Google Scholar

[12] A. Ushida, Y Yamagami, I. Kinouchi, Y Nishio and Y Inoue. An efficient algorithm for finding multiple DC solutions based on SPICE oriented Newton homotopy method[J]. IEEE Trans. Comput. -Aided Des. Integrated Circuits & Syst., 2002, CAD-21(3): 337-348.

DOI: 10.1109/43.986427

Google Scholar

[13] Kazutoshi Sako, Hong Yu and Yasuaki Inoue. A globally convergent method for finding DC solutions of MOS transistor circuits[C]. IEEJ International Analog VLSI Workshop 2006, Hangzhou China, Nov. (2006).

Google Scholar

[14] J. Roychowdhury and R. Melville. Delivering global DC convergence for large mixed-signal circuits via homotopy/continuation methods[J]. IEEE Trans. Comput. -Aided Des. Integr. Circuits & Syst., 2006, 25(1): 66-78.

DOI: 10.1109/tcad.2005.852461

Google Scholar

[15] Dan Niu, Guangming Hu and Y. Inoue. Theorems on the global convergence of the nonlinear homotopy method for MOS circuits[C]. Proc. 2011 Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics, 2001, 41-44.

DOI: 10.1109/primeasia.2011.6075066

Google Scholar

[16] Dan Niu, Kazutoshi Sako, Guangming Hu and Y. Inoue. A globally Convergence nonlinear homotopy method for MOS transistor circuits[J]. IEICE Trans. Fundamentals, 2012, E95-A(12): 2251-2260.

DOI: 10.1587/transfun.e95.a.2251

Google Scholar

[17] Tadeusiewicz M, Hałgas S. A method for finding multiple DC operating points of short channel CMOS circuits[J]. Circuits Syst. Signal Process, 2013, 32(5): 2457-2468.

DOI: 10.1007/s00034-013-9582-7

Google Scholar

[18] Yasuaki Inoue. DC analysis of nonlinear circuits using solution-tracing circuits[J]. Electronics and Communications in Japan, 1992, 75(7): 52-63.

DOI: 10.1002/ecjc.4430750706

Google Scholar