[1]
赵利波. 数控机床直线滚动导轨动力学特性研究[D]. 杭州: 浙江工业大学, (2012).
DOI: 10.7498/aps.47.1416
Google Scholar
[2]
张耀满, 刘春时, 谢志坤等. 数控机床直线滚动导轨结合面有限元分析[J]. 制造技术与机床, 2007, 57(7): 75-78.
DOI: 10.37155/2717-5197-0405-70
Google Scholar
[3]
王辉. CK6136数控车床交流伺服进给系统的分析与仿真[D]. 杭州: 浙江工业大学, (2009).
DOI: 10.7498/aps.54.1490
Google Scholar
[4]
吴南星, 孙庆鸿, 余冬玲等. 基于多体系统理论的机床运动学仿真与应用研究[J]. 东南大学学报(英文版), 2004, 21(2): 162-164.
DOI: 10.55375/jonef.2022.2.3
Google Scholar
[5]
T. Khandeparkar, M. Liewald. Hydromechanical deep drawing of cups with stepped geometries[J]. Journal of materials processing technology, 2008, 202: 246-254.
DOI: 10.1016/j.jmatprotec.2007.08.072
Google Scholar
[6]
V. Savas, O. Secgin. A new type of deep drawing die design and experimental results[J]. Materials and Design, 2007, 28: 1330-1333.
DOI: 10.1016/j.matdes.2006.01.004
Google Scholar
[7]
G.C.R. Moura, M.T.P. Aguilar, A.E.M. Pertence, et al. The failure analysis of a deep drawing die in the manufacturing of an automotive shock absorber cap[J]. Engineering Failure Analysis, 2004, 11: 943-950.
DOI: 10.1016/j.engfailanal.2003.11.002
Google Scholar
[8]
K.W. Wang, Y.C. Shin, C.H. Chen. On the natural frequencies of high-speed spindleswith angular contact bearings[C]. Proc of the Institution of Mechanical Engineers, 2005, 3: 147-154.
DOI: 10.1243/pime_proc_1991_205_105_02
Google Scholar
[9]
A.G. Reborn, J. Jiang, P.E. Orban, et al. Modeling and experimental Investigation of spindle and cutter dynamics for a high-precision machining center[J]. Intdv Manuf Teachnol, 2004, 26(24): 806-815.
DOI: 10.1007/s00170-003-1794-8
Google Scholar
[10]
R. Mahdavinejad. Finite element analysis of machine and work piece instability in turning[J]. International Journal Machine Tools Manufacture, 2005, 45: 753-760.
DOI: 10.1016/j.ijmachtools.2004.11.017
Google Scholar