Optimization of Coating Thickness in a Tangential Fluidized Bed

Article Preview

Abstract:

The focal intention of this research was to investigate the factors influencing the coating thickness of urea granule by using modified biopolymer which performed in a tangential fluidized bed. The effects of inlet air temperature, disc rotation speed and spraying rate on coating thickness of urea granule were investigated. In this study, the results showed that the significant process parameters which effect the coating thickness was spraying rate (58.585%), followed by disc rotation speed (21.579%) and inlet air temperature (18.883%). The optimized process parameters in this work were 400C for inlet air temperature, 40 rpm for disc rotation speed and 2 rpm for spraying rate. The confirmation run for this work had verified the conclusion from the variance analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-135

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Erisman, A. Bleeker, J. Galloway and M.S. Sutton, Reduced nitrogen in ecology and the environment, Environmental Pollution, 150 (2007) 140-149.

DOI: 10.1016/j.envpol.2007.06.033

Google Scholar

[2] R. C. Rowe, Film/tablet adhesion, film thickness, internal stresses and bridging of the intagliations—A unified model with practical implications, European Journal of Pharmaceutical Sciences 30 (3–4) (2007) 236–239.

DOI: 10.1016/j.ejps.2006.11.005

Google Scholar

[3] J. Singha, A. Kunhikrishnanb, N.S. Bolanc, and S. Saggard, Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine, Science of The Total Environment, In Press, (2013).

DOI: 10.1016/j.scitotenv.2013.02.018

Google Scholar

[4] M. M. S. Choi and A. Meisen, Sulfur coating of urea in shallow spouted beds, Chemical Engineering Science 52 (1997) 1073–1086.

DOI: 10.1016/s0009-2509(96)00377-6

Google Scholar

[5] B. S. Ko,Y.S. Cho and H. K. Rhee, Controlled Release of Urea from Rosin-Coated Fertilizer Particles, Ind. Eng. Chem. Res. 35 (1996) 250-257.

DOI: 10.1021/ie950162h

Google Scholar

[6] A. A. Ibrahim and B. Y. Jibril, Controlled Release of Paraffin Wax/Rosin-Coated Fertilizers, Ind. Eng. Chem. Res. 44 (2005) 2288-2291.

DOI: 10.1021/ie048853d

Google Scholar

[7] M. Vashishtha, P. Dongara and D. Singh, Improvement in Properties of Urea by Phosphogypsum Coating, International Journal of ChemTech Research 2 (1) (2010) 36-44.

Google Scholar

[8] J. Ge, R. Wu, X. Shi, H. Yu, M. Wang and W. Li, Biodegradable Polyurethane Materials from Bark and Starch. II. Coating Material for Controlled-Release Fertilizer, Journal of Applied Polymer Science 86 (2002) 2948–2952.

DOI: 10.1002/app.11211

Google Scholar

[9] N. Tudorachi, C.N. Cascaval, M. Rusu , M. Pruteanu, Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials, Polymer Testing, 19 (2000) 785–799.

DOI: 10.1016/s0142-9418(99)00049-5

Google Scholar

[10] E. Chiellini, A. Corti and R. Solaro, Biodegradation of poly (vinyl alcohol) based blown films under different environmental conditions, Polymer Degradation and Stability 64 (1999) 305-312.

DOI: 10.1016/s0141-3910(98)00206-7

Google Scholar

[11] X. Hana, S. Chena and X. Hu, Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating, Desalination 240 (2009) 21-26.

DOI: 10.1016/j.desal.2008.01.047

Google Scholar

[12] M. P. Filho, S. C. S. Rocha, and A. C. L. Lisboa, Modeling and experimental analysis of polydispersed particles coating in spouted bed, Chemical Engineering and Processing: Process Intensification 45 (2006) 965–972.

DOI: 10.1016/j.cep.2006.02.008

Google Scholar

[13] Y. Chen, J. Yang, A. Mujumdar, and R. Dave, Fluidized bed film coating of cohesive Geldart group C powders, Powder Technology 189 (2009) 466–480.

DOI: 10.1016/j.powtec.2008.08.002

Google Scholar

[14] G. S. da Rosa, S. C. dos S. Rocha, Effect of process conditions on particle growth for spouted bed coating of urea, Chemical Engineering and Processing: Process Intensification 49 (2010) 836–842.

DOI: 10.1016/j.cep.2010.06.005

Google Scholar

[15] Information on http: /www. dipharma. com/TC_20050401_20. pdf.

Google Scholar

[16] L. Fries, S. Antonyuk, S. Heinrich, and S. Palzer, DEM-CFD modeling of a fluidized bed spray granulator, Chemical Engineering Science 66 (2011) 2340-2355.

DOI: 10.1016/j.ces.2011.02.038

Google Scholar

[17] A. Palamanita, S. Soponronnarita, S. Prachayawarakornb, and P. Tungtrakulc, Effects of inlet air temperature and spray rate of coating solution on quality attributes of turmeric extract coated rice using top-spray fluidized bed coating technique, Journal of Food Engineering 114 (2013).

DOI: 10.1016/j.jfoodeng.2012.07.014

Google Scholar

[18] R. Lan, Y. Liu, G. Wang, T. Wang, C. Kan, and Y. Jin, Experimental modeling of polymer latex spray coating for producing controlled-release urea, Particuology 9 (2011) 510-516.

DOI: 10.1016/j.partic.2011.01.004

Google Scholar

[19] S. Srivastava, and G. Mishra, Fluid Bed Technology: Overview and Parameters for Process Selection, International Journal of Pharmaceutical Sciences and Drug Research 2 (2010) 236-246.

Google Scholar

[20] F. Ronsse, J. Depelchin, and J. G. Pieters, Particle surface moisture content estimation using population balance modeling in fluidised bed agglomeration, Journal of Food Engineering 109 (2012) 347-357.

DOI: 10.1016/j.jfoodeng.2011.11.023

Google Scholar

[21] L. Jusin and O. Antikainen, P. Merkku, and J. Yliruusi, Droplet size measurement: Effect of three independent variables on droplet size distribution and spray angle from a pneumatic nozzle, International Journal of Pharmaceutical 123 (1995).

DOI: 10.1016/0378-5173(95)00081-s

Google Scholar

[22] S. Obara and J.W. McGinity, Influence of processing variables on the properties of free films prepared from aqueous polymeric dispersions by a spray technique, International Journal of Pharmaceutics 126 (1995) 1-10.

DOI: 10.1016/0378-5173(95)04057-9

Google Scholar

[23] M.H. Shi, H. Wang and Y.L. Hao, Experimental investigation of the heat and mass transfer in a centrifugal fluidized bed dryer, Chemical Engineering Journal 78 (2000) 107–113.

DOI: 10.1016/s1385-8947(00)00148-0

Google Scholar

[24] Q. Huang, H. Zahng, and J. Zhu, Onset of An Innovative Gasless Fluidized Bed — Comparative Study on the Fluidization of Fine Powders in a Rotating Drum and a Traditional Fluidized Bed, Chemical Engineering Science 65 (2010) 1261-1273.

DOI: 10.1016/j.ces.2009.09.083

Google Scholar

[25] H. Nakamura, and S. Watano, Numerical modeling of particle fluidization behavior in a rotating fluidized bed, Powder Technology 171 (2007) 106–117.

DOI: 10.1016/j.powtec.2006.08.021

Google Scholar

[26] N. Poukavoos and G. E. Peck, Effect of aqueous film condition on water removal efficiency and physical properties of coated tablet cores containing superdisintegrants, Drug Dev. Ind. Pharm. 20 (1994) 1535-1554.

DOI: 10.3109/03639049409050196

Google Scholar

[27] R. Mirja, Studies on Aqueous Film Coating of Tablets Performed in a Side-Vented Pan Coater, (2003).

Google Scholar

[28] S. C. Porter, R. P. Verseput and C. R. Cunningham, Process optimization using design of experiments, Pharmaceutical Technology 21 (1007) 60-70.

Google Scholar

[29] B. D. Rege, J. Gawel, and H. J. Kou, Identification of critical process variables for coating actives onto tablets via statistically designed experiments, International Journal of Pharmaceutics 237 (2002) 87-94.

DOI: 10.1016/s0378-5173(02)00037-6

Google Scholar

[30] K. E. Wilson, and E. Crossman, The influence of tablet shape and pan speed on intra-tablet film coating uniformity, Drug Development and Industrial Pharmacy 23 (1997) 1239-1243.

DOI: 10.3109/03639049709146164

Google Scholar

[31] R. Pisek, O. Planinsek, M. Tus, and S. Srcic, Influence of Rotational Speed and Surface of Rotating Disc on Pellets Produced by Direct Rotor Pelletization, Pharmazeutische Industrie 62 (2000) 312-319.

Google Scholar

[32] P. J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill International Editions, (1996).

Google Scholar

[33] A. Sarwono, Z. Man, and M. A. Bustam, Improvement of hydrophobicity of urea modified tapioca starch film with lignin for slow release fertilizer, Advanced Materials Research 626 (2013) 350-354.

DOI: 10.4028/www.scientific.net/amr.626.350

Google Scholar

[34] Nienow A.W. and Rowe P.N., Particulate Growth and Coating in a Gas-Fluidized Bed, In; Fluidization, (Davidson J.F., Cliff R. and Harrison D., eds), Chap. 17, Academic Press, London, (1985).

Google Scholar

[35] Davies W.L. and Gloor Jr. W.T., Batch Production of Pharmaceutical Granulation in Fluidized Bed I: Effects of Process Variables on Physical Properties of Final Granulation, J. Pharm. Sci. 60 (1971) 1869-1874.

DOI: 10.1002/jps.2600601224

Google Scholar

[36] F. L. Laksmana, P. J. A. Hartman Kok, H. Vromans, H. W. Frijlink, and K. Van der Voort Maarschalk, Development and Application of a Process Window for Achieving High-Quality Coating in a Fluidized Bed Coating Process, AAPS PharmSciTech. 10 (3) (2009).

DOI: 10.1208/s12249-009-9250-1

Google Scholar

[37] J. Bouffard, H. Dumontb, F. Bertrand and R. Legros, Optimization and scale-up of a fluid bed tangential spray rotogranulation process, International Journal of Pharmaceutics 335 (2007) 54–62.

DOI: 10.1016/j.ijpharm.2006.11.022

Google Scholar