Heat Exchanger Network Optimization Using Differential Evolution with Stream Splitting

Article Preview

Abstract:

Reduction in energy consumption is an important task in process industry. The basic idea of heat exchanger network (HEN) is using cold streams to cool hot streams and hot streams to heat cold streams. Hence, synthesis and optimization of HEN is a main tool for improving heat recovery. This article introduces a new strategy for HEN optimization using differential evolution algorithm. The proposed method considers splitting stream at the pinch point, to minimize the total cost of the network. Primarily, the minimum approach temperature value is determined through super-targeting. Then, differential evolution is employed to specify the heat load of heat exchangers and splitting streams. The HEN structure obtained in this work has better economics and illustrates the better performance by this approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

373-377

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. H. Linnhoff, E. Hindmarsh, The Pinch Design Method for Heat Exchanger Networks, Chem. Eng. Sci., 38 (1983) 745-763.

DOI: 10.1016/0009-2509(83)80185-7

Google Scholar

[2] B. Linnhoff, S. Ahmad, SUPERTARGETING: Optimum Synthesis of Energy Management Systems, J. Energy Resour. Technol., 111 (1989) 121-130.

DOI: 10.1115/1.3231413

Google Scholar

[3] S. A. Papoulias, I. E. Grossmann, A Structural Optimization Approach in Process Synthesis II. Heat Recovery Networks, Comput. Chem. Eng., 7 (1983) 707-721.

Google Scholar

[4] C. A. Floudas, Automatic synthesis of optimum heat exchanger network configurations, AIChE J., 32 (1986) 276-290.

DOI: 10.1002/aic.690320215

Google Scholar

[5] J. Cerda, Minimum utility usage in heat exchanger network synthesis: A transportation problem, Chem. Eng. Sci., 38 (1983) 373-387.

DOI: 10.1016/0009-2509(83)80156-0

Google Scholar

[6] T. F. Yee, I. E. Grossmann, Simultaneous optimization models for heat integration - II. Heat exchanger network synthesis, Comput. & Chem. Eng., 14 (1990) 1165-1184.

DOI: 10.1016/0098-1354(90)85010-8

Google Scholar

[7] A. Ciric, C. Floudas, Heat exchanger network synthesis without decomposition, Comput. & Chem. Eng., 15 (1991) 385-396.

DOI: 10.1016/0098-1354(91)87017-4

Google Scholar

[8] M. Ravagnani, Heat exchanger network synthesis and optimisation using genetic algorithm, Appl. Therm. Eng., 25 (2005) 1003-1017.

DOI: 10.1016/j.applthermaleng.2004.06.024

Google Scholar

[9] B. Lin, D. C. Miller, Solving heat exchanger network synthesis problems with Tabu Search, Comput. & Chem. Eng., 28 (2004) 1451-1464.

DOI: 10.1016/j.compchemeng.2003.10.004

Google Scholar

[10] W. Dolan, Algorithmic efficiency of simulated annealing for heat exchanger network design, Comput. & Chem. Eng., 14 (1990) 1039-1050.

DOI: 10.1016/0098-1354(90)85001-q

Google Scholar

[11] K. M. Yerramsetty, C. Murty, Synthesis of cost-optimal heat exchanger networks using differential evolution, Comput. & Chem. Eng., 32 (2008), 1861-1876.

DOI: 10.1016/j.compchemeng.2007.10.005

Google Scholar

[12] N. T. P. Thuy, R. Pendyala, N. Rarmanian and N. Marneni, Heat Exchanger Network Optimization by Differential Evolution Method, accepted Appl. Mech. Mater. (2013).

DOI: 10.4028/www.scientific.net/amm.564.292

Google Scholar

[13] Á. Martín, F. A. Mato, Hint: An educational software for heat exchanger network design with the pinch method, Educ. Chem. Eng., 3 (2008), e6-e14.

DOI: 10.1016/j.ece.2007.08.001

Google Scholar

[14] M. Escobar, J. O. Trierweiler, Optimal heat exchanger network synthesis: A case study comparison, Appl. Therm. Eng., 51 (2013), 801-826.

DOI: 10.1016/j.applthermaleng.2012.10.022

Google Scholar