Effect of Ball Milling on the Catalytic Conversion of Cellulose to Levulinic Acid

Article Preview

Abstract:

The yield of levulinic acid from cellulose is very low because of a strong network of intera-and intermolecular hydrogen bonding. Ball milling cause significant decrease in the cellulose crystalinity and thus increase the production of levulinic acid (LA) by using Aluminum Chloride (AlCl3) as a catalyst. By means of AlCl3 depolymerization, cellulose can produce 5-Hydroxymethylfurfural (5-HMF) and subsequently LA. The effect of reaction temperature and time were investigated. The maximum yield of LA (36.5 mol %) was achieved using 180 oC and 240 min. Keyword: Ball milling, Levulinic Acid, Cellulose, Aluminium (III) Chloride, 5-Hydroxymethylfurfural

You might also be interested in these eBooks

Info:

Periodical:

Pages:

353-356

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sasaki, T. Adschiri, and K. Arai, Production of cellulose II from native cellulose by near-and supercritical water solubilization, Journal of agricultural and food chemistry, vol. 51, pp.5376-5381, (2003).

DOI: 10.1021/jf025989i

Google Scholar

[2] B. V. Timokhin, V. A. Baransky, and G. D. Eliseeva, Levulinic acid in organic synthesis, Russian chemical reviews, vol. 68, pp.73-84, (1999).

DOI: 10.1070/rc1999v068n01abeh000381

Google Scholar

[3] B. Girisuta, B. Danon, R. Manurung, L. Janssen, and H. Heeres, Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid, Bioresource technology, vol. 99, pp.8367-8375, (2008).

DOI: 10.1016/j.biortech.2008.02.045

Google Scholar

[4] J. J. Bozell, L. Moens, D. Elliott, Y. Wang, G. Neuenscwander, S. Fitzpatrick, et al., Production of levulinic acid and use as a platform chemical for derived products, Resources, conservation and recycling, vol. 28, pp.227-239, (2000).

DOI: 10.1016/s0921-3449(99)00047-6

Google Scholar

[5] D. B. Bevilaqua, M. K. Rambo, T. M. Rizzetti, A. L. Cardoso, and A. F. Martins, Cleaner Production: Levulinic Acid from Rice Husks, Journal of Cleaner Production, (2013).

DOI: 10.1016/j.jclepro.2013.01.035

Google Scholar

[6] A. Efremov, G. Pervyshina, and B. Kuznetsov, Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts, Chemistry of natural compounds, vol. 34, pp.182-185, (1998).

DOI: 10.1007/bf02249141

Google Scholar

[7] C. Chang, P. Cen, and X. Ma, Levulinic acid production from wheat straw, Bioresource technology, vol. 98, pp.1448-1453, (2007).

DOI: 10.1016/j.biortech.2006.03.031

Google Scholar

[8] B. Girisuta, L. Janssen, and H. Heeres, Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid, Industrial & engineering chemistry research, vol. 46, pp.1696-1708, (2007).

DOI: 10.1021/ie061186z

Google Scholar

[9] F. Carvalheiro, L. C. Duarte, and F. M. Gírio, Hemicellulose biorefineries: a review on biomass pretreatments, (2008).

Google Scholar

[10] J. P. Lange, W. D. van de Graaf, and R. J. Haan, Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts, ChemSusChem, vol. 2, pp.437-441, (2009).

DOI: 10.1002/cssc.200800216

Google Scholar

[11] Y. Yu and H. Wu, Effect of ball milling on the hydrolysis of microcrystalline cellulose in hot‐compressed water, AIChE Journal, vol. 57, pp.793-800, (2011).

DOI: 10.1002/aic.12288

Google Scholar

[12] L. Peng, L. Lin, J. Zhang, J. Zhuang, B. Zhang, and Y. Gong, Catalytic conversion of cellulose to levulinic acid by metal chlorides, Molecules, vol. 15, pp.5258-5272, (2010).

DOI: 10.3390/molecules15085258

Google Scholar

[13] L. Yan, N. Yang, H. Pang, and B. Liao, Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloride acid, CLEAN–Soil, Air, Water, vol. 36, pp.158-163, (2008).

DOI: 10.1002/clen.200700100

Google Scholar