Development of Morphology Dependent Titania Nanomaterial for Photo Degradation of Dyes

Article Preview

Abstract:

Titania nanomaterial flower structure is synthesized through the ionothermal route and is used for the degradation of sulfan blue (SB) through the photo catalysis process. The ionic liquid used is 1-butyl-3-methypyridium dicyanamide ([Bmpm]DCN). The particle sizes and surface morphologies are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET). Three types of titania have been compared for their degradation performance, namely commercial titania (TP), titania nanotube (TN), and titania flower (TF). The size of the particle is found to be approximately 33 nm from the FE–SEM analysis. The BET measures the highest surface area of 220 m2 g-1 and pore volume of 0.15 cm3 g-1 for the TF. The degradation of binary dye is more favorable in alkaline solution with pH 14 while varying the dosage of the commercial TiO2 from 0.025–0.2 g reveals an increase in the rate of degradation with optimum dosage is found to be 0.2 g. Results show that TF degradation rate is higher as compared to TP and TN.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-352

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.G. Bhattacharyya, A. Sarma, Adsorption characteristics of the dye on neem leaf powder, Dyes and Pigments, 57 (2003) 211 – 222.

DOI: 10.1016/s0143-7208(03)00009-3

Google Scholar

[2] N.M. Mahmoodi, M. Arami, Degradation and toxicity reduction of textile wastewater using immobilized titania nano photo catalysis, Journal of Photochemistry and Photobiology B, 94 (2009) 20 – 24.

DOI: 10.1016/j.jphotobiol.2008.09.004

Google Scholar

[3] C.L. Wong, Y.N. Tan, A.R. Mohamed, A review on the formation of titania nanotube photo catalysts by hydrothermal treatment, Journal of Environmental Management, 92 (2011) 1669 – 1680.

DOI: 10.1016/j.jenvman.2011.03.006

Google Scholar

[4] F. Sayilkan, S. Erdemoğlu, M. Asiltürk, M. Akarsu, Ş. Şener, H. Sayilkan, M. Erdemoğlu, E. Arpaç, Photocatalytic performance of pure anatase nanocrystallite TiO2 synthesized under low temperature hydrothermal conditions, Materials Research Bulletin, 41 (2006).

DOI: 10.1016/j.materresbull.2006.04.019

Google Scholar

[5] A. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes, Journal of Molecular Catalysis A, 328 (2010) 8 – 26.

DOI: 10.1016/j.molcata.2010.05.023

Google Scholar

[6] Q. Zhang, L. Gao, J. Guo, Effects of calcination on the photo catalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Applied Catalysis B, 26 (2000) 207 – 215.

DOI: 10.1016/s0926-3373(00)00122-3

Google Scholar

[7] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photo catalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515 – 582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[8] P. I. Liu, L.C. Chung, H. Shao, T. M. Liang, R. Y. Horng, C. C. M. Ma, M. C. Chang, Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization, Electrochimica Acta, 96 (2013).

DOI: 10.1016/j.electacta.2013.02.099

Google Scholar

[9] H. Bai, L. Liu, Z. Liu, D. D. Sun, Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photo catalytic membrane water purification, Water Research, 47 (2013) 4126 – 4138.

DOI: 10.1016/j.watres.2012.09.059

Google Scholar

[10] B. Souvereyns, K. Elen, C. De Dobbelaere, A. Kelchtermans, N. Peys, J. D'Haen, M. Mertens, S. Mullens, H. Van den Rul, V. Meynen, P. Cool, A. Hardy, M. K. Van Bael, Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles, Chemical Engineering Journal, 223 (2013).

DOI: 10.1016/j.cej.2013.02.047

Google Scholar

[11] J. Xia, H. Li, Z. Luo, K. Wang, S. Yin, Y. Yan, Ionic liquid-assisted hydrothermal synthesis of three-dimensional hierarchical CuO peachstone-like architectures, Applied Surface Science, 256 (2010) 1871 – 1877.

DOI: 10.1016/j.apsusc.2009.10.022

Google Scholar

[12] N. D. Abazović, M. I. Čomor, S. Zec, J. M. Nedeljković, E. Piscopiello, A. Montone, M. V. Antisari, Structural and optical characterization of flower‐like rutile nanostructures doped with Fe3+, J. Am. Ceram. Soc., 92 (2009) 894 – 896.

DOI: 10.1111/j.1551-2916.2009.02962.x

Google Scholar

[13] P. Ji, J. Zhang, F. Chen, M. Anpo, Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation, Applied Catalysis B, 85 (2009) 148 – 154.

DOI: 10.1016/j.apcatb.2008.07.004

Google Scholar

[14] C. C. Chen, C. S. Lu, F. D. Mai, C. S. Weng, Photooxidative n-de-ethylation of anionic triarylmethane dye (sulfan blue) in titanium dioxide dispersions under uv irradiation, J. Hazard. Mater., 137 (2006) 1600 – 1607.

DOI: 10.1016/j.jhazmat.2006.04.047

Google Scholar