[1]
Piccolo, C. and F. Bezzo, A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass and bioenergy, 2009. 33(3): pp.478-491.
DOI: 10.1016/j.biombioe.2008.08.008
Google Scholar
[2]
Camacho, F. and P. Gonzalez-Tello, Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid.
Google Scholar
[3]
Agarwal, U.P., J. Zhu, and S.A. Ralph, Enzymatic hydrolysis of loblolly pine: effects of cellulose crystallinity and delignification. Holzforschung, 2013. 67(4): pp.371-377.
DOI: 10.1515/hf-2012-0116
Google Scholar
[4]
Gliozzi, G., et al., Zr/P/O catalyst for the direct acid chemo-hydrolysis of non-pretreated microcrystalline cellulose and softwood sawdust. Applied Catalysis B: Environmental, 2014. 145(0): pp.24-33.
DOI: 10.1016/j.apcatb.2012.12.035
Google Scholar
[5]
Sun, Y. and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 2002. 83(1): pp.1-11.
DOI: 10.1016/s0960-8524(01)00212-7
Google Scholar
[6]
Bootsma, J.A. and B.H. Shanks, Cellobiose hydrolysis using organic–inorganic hybrid mesoporous silica catalysts. Applied Catalysis A: General, 2007. 327(1): pp.44-51.
DOI: 10.1016/j.apcata.2007.03.039
Google Scholar
[7]
Rinaldi, R. and F. Schüth, Design of solid catalysts for the conversion of biomass. Energy & Environmental Science, 2009. 2(6): pp.610-626.
Google Scholar
[8]
Zhang, C., et al., Magnetic core-shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose. Cellulose, 2013. 20(1): pp.127-134.
DOI: 10.1007/s10570-012-9839-5
Google Scholar
[9]
Onda, A., T. Ochi, and K. Yanagisawa, Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Topics in Catalysis, 2009. 52(6-7): pp.801-807.
DOI: 10.1007/s11244-009-9237-x
Google Scholar
[10]
Ramesh Kumar, C., P.S. Sai Prasad, and N. Lingaiah, Aluminium exchanged heteropoly tungstate supported on titania catalysts: The generation of Lewis acidity and its role for benzylation reaction. Journal of Molecular Catalysis A: Chemical, 2011. 350(1–2): pp.83-90.
DOI: 10.1016/j.molcata.2011.09.011
Google Scholar
[11]
Tian, J., et al., Hydrolysis of cellulose by the heteropoly acid H<sub Cellulose, 2010. 17(3): pp.587-594.
Google Scholar
[12]
Dimitrijevic, R., W. Lutz, and A. Ritzmann, Hydrothermal stability of zeolites: Determination of extra-framework species of HY faujasite-type steamed zeolite. Journal of Physics and Chemistry of Solids, 2006. 67(8): pp.1741-1748.
DOI: 10.1016/j.jpcs.2006.03.014
Google Scholar
[13]
Lai, D. m., et al., Hydrolysis of cellulose into glucose by magnetic solid acid. ChemSusChem, 2011. 4(1): pp.55-58.
Google Scholar
[14]
Tagusagawa, C., et al., Highly Active Mesoporous Nb–W Oxide Solid‐Acid Catalyst. Angewandte Chemie, 2010. 122(6): pp.1146-1150.
DOI: 10.1002/ange.200904791
Google Scholar
[15]
Toda, M., et al., Default Green chemistry: Biodiesel made with sugar catalyst. Nature, 2005. 438: pp.178-178.
Google Scholar
[16]
Huang, J., et al., Concentration and acid strength of hydroxyl groups in zeolites La, Na-X and La, Na-Y with different lanthanum exchange degrees studied by solid-state NMR spectroscopy. Microporous and Mesoporous Materials, 2007. 104(1–3): pp.129-136.
DOI: 10.1016/j.micromeso.2007.01.016
Google Scholar
[17]
Pedrosa, A.M.G., et al., Synthesis, characterization and catalytic properties of the cobalt and nickel supported on HZSM-12 zeolite. Catalysis Communications, 2006. 7(10): pp.791-796.
DOI: 10.1016/j.catcom.2006.02.012
Google Scholar
[18]
Zhang, et al., Recent Research on One-Dimensional Silicon-Based Semiconductor Nanomaterials: Synthesis, Structures, Properties and Applications. Critical Reviews in Solid State and Material Sciences, 2011. 36(3): pp.148-173.
DOI: 10.1080/10408436.2011.589233
Google Scholar