Effect of Modification Techniques on Surface of Carbon Nanofiber as Catalyst Support

Article Preview

Abstract:

The intrinsic surface of carbon nanofiber (CNF) is important for supported catalyst preparation. The surface changes due to various techniques applied such as N2 thermal and HNO3 oxidation methods. The combination of different analyses is to observe the internal structure through Raman spectroscope, textural properties via N2 physisorption and morphology of CNF using transmission electron microscope or through quantification of oxygen containing groups by acid base titration. As results, an extension of residence time increases the amount of amorphous and damages the structure of mesoporous CNF texture unexpectedly. The change from hydrophobic to hydrophilic surface of CNF is due to the growing number of oxygen. The surface area of CNF by HNO3 treatment method produces 115.14m2/g which is higher than that of using thermal method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

345-348

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Yahya, Carbon and oxide nanostructures: synthesis, characterization and applications, springer, German, (2010).

Google Scholar

[2] P. Serp, J.L. Figueiredo, Carbon materials for catalysis, Wiley, (2009).

Google Scholar

[3] E. Ochoa-Fernández, D. Chen, Z. Yu, B. Tøtdal, M. Rønning, A. Holmen, Catalysis Today 102-103 (2005) 45-49.

DOI: 10.1016/j.cattod.2005.02.005

Google Scholar

[4] W. -K. Choi, S. -G. Park, H. Takahashi, T. -H. Cho, Synthetic Metals 139 (2003) 39-42.

Google Scholar

[5] C.V. Nguyen, L. Delziet, K. Matthews, B. Chen, M. Meyyappan, Journal of Nanoscience and Nanotechnology 3 (2003) 121-125.

Google Scholar

[6] G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, R.S. Ruoff, Chem. Mater. 10 (1998) 260-267.

Google Scholar

[7] A. Rasheed, J.Y. Howe, M.D. Dadmun, P.F. Britt, Carbon 45 (2007) 1072-1080.

Google Scholar

[8] M.L. Toebes, J.M.P. van Heeswijk, J.H. Bitter, A. Jos van Dillen, K.P. de Jong, Carbon 42 (2004) 307-315.

DOI: 10.1016/j.carbon.2003.10.036

Google Scholar

[9] T.G. Ros, A.J. Van Dillen, J.W. Geus, D.C. Koningsberger, Chemistry-a European Journal 8 (2002) 1151-1162.

Google Scholar

[10] M.K. van der Lee, J. van Dillen, J.H. Bitter, K.P. de Jong, J. Am. Chem. Soc. 127 (2005) 13573-13582.

DOI: 10.1021/ja053038q

Google Scholar

[11] R. Baker, Carbon 27 (1989) 315-323.

Google Scholar

[12] V. Barranco, M.A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibañez, F. Agullo-Rueda, J.M. Amarilla, J.M. Rojo, J. Phys. Chem. C 114 (2010) 10302-10307.

DOI: 10.1021/jp1021278

Google Scholar

[13] N. Tang, J. Wen, Y. Zhang, F. Liu, K. Lin, Y. Du, ACS Nano 4 (2010) 241-250.

Google Scholar

[14] A.C. Ferrari, Solid State Communications 143 (2007) 47-57.

Google Scholar

[15] D. Goers, H. Buqa, L. Hardwick, A. Würsig, P. Novák, Ionics 9 (2003) 258-265.

DOI: 10.1007/bf02375977

Google Scholar

[16] D.S. Knight, W.B. White, Journal of Materials Research 4 (1989) 385-393.

Google Scholar

[17] P. Li, T. -J. Zhao, J. -H. Zhou, Z. -J. Sui, Y. -C. Dai, W. -K. Yuan, Carbon 43 (2005) 2701-2710.

Google Scholar

[18] J. -H. Ting, C. -C. Chang, S. -L. Chen, D. -S. Lu, C. -Y. Kung, F. -Y. Huang, Thin Solid Films 496 (2006) 299-305.

Google Scholar

[19] Y. -H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Carbon 41 (2003) 1057-1062.

Google Scholar

[20] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, Science 280 (1998) 1253-1256.

DOI: 10.1126/science.280.5367.1253

Google Scholar